
Yin et al. Chinese Medicine          (2022) 17:116  
https://doi.org/10.1186/s13020-022-00667-8

RESEARCH

Poria cocos polysaccharides exert prebiotic 
function to attenuate the adverse effects 
and improve the therapeutic outcome of 5‑FU 
in ApcMin/+ mice
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Abstract 

Background:  As a first-line chemotherapeutic agent, 5-fluorouracil (5-FU) exhibits many side effects, weakening its 
efficacy in cancer treatment. In this study, we hypothesize that Poria cocos polysaccharides (PCP), a traditional Chinese 
herbal medicine with various bioactivities and prebiotic effects, might improve the therapeutic effect of 5-FU by 
restoring the homeostasis of the gut microenvironment and the commensal gut microflora.

Methods:  ApcMin/+ mice were employed to evaluate the anti-cancer effect of 5-FU in conjunction with PCP treat-
ment. Body weight and food consumption were monitored weekly. Polyp count was used to assess the anti-cancer 
effect of PCP and 5-FU. Expressions of mucosal cytokines and gut epithelial junction molecules were measured using 
qRT-PCR. 16S rRNA gene sequencing of fecal DNAs was used to evaluate the compositional changes of gut microbi-
ota (GM). Transplantation of Lactobacillus johnsonii and Bifidobacterium animalis were performed to verify the prebiotic 
effects of PCP in improving the efficacy of 5-FU.

Results:  The results showed that PCP treatment alleviated the weight loss caused by 5-FU treatment and reduced 
the polyp burden in ApcMin/+ mice. Additionally, PCP treatment eased the cytotoxic effects of 5-FU by reducing the 
expressions of pro-inflammatory cytokines, increasing the anti-inflammatory cytokines; and significantly improv-
ing the gut barriers by enhancing the tight junction proteins and associated adhesion molecules. Furthermore, 16S 
rRNA gene sequencing data showed that PCP alone or with 5-FU could stimulate the growth of probiotic bacteria 
(Bacteroides acidifaciens, Bacteroides intestinihominis, Butyricicoccus pullicaecorum, and the genera Lactobacillus, Bifi-
dobacterium, Eubacterium). At the same time, it inhibited the growth of potential pathogens (e.g., Alistipes finegoldii, 
Alistipes massiliensis, Alistipes putredinis., Citrobacter spp., Desulfovibrio spp., and Desulfovibrio desulfuricans). Moreover, 
the results showed that transplantation of L.johnsonii and B.animalis effectively reduced the polyp burden in ApcMin/+ 
mice being treated with 5-FU.
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Introduction
Colorectal cancer (CRC) is a high-risk illness that threat-
ens countless people’s health and causes a severe finan-
cial burden to society. With more than 1.9 million new 
cases and 935,000 deaths in 2020, CRC will become the 
second most common cause of cancer-related mortal-
ity worldwide [1]. For CRC therapy, surgery is the first-
choice therapy. However, because of the high incidence 
of relapse and metastasis, chemotherapy still plays a vital 
role in caring for CRC patients in clinics. For the past 
50  years, 5-FU, the derivative of uracil, has served as 
the classic and standard agent for CRC chemotherapy. 
5-FU exerts antitumor effects by interfering with thymi-
dylate synthase and inhibiting DNA and RNA synthesis. 
As a consequence, 5-FU effectively induces cell cycle 
arrest and apoptosis of the tumor cells [2]. However, the 
adverse effects of 5-FU, including gastrointestinal toxici-
ties, peripheral blood cytopenia, and neurologic abnor-
malities, cannot be ignored [3]. Furthermore, among 
various side effects of 5-FU therapy, about 50–80% of the 
patients suffered severe intestinal mucosal damage that 
caused severe diarrhea, nausea, vomiting, and anorexia 
[4, 5]. Therefore, it is necessary to develop new strategies 
to minimize or prevent the adverse effects and improve 
the therapeutic efficiency of 5-FU.

The host-microbes interaction plays a crucial role in 
health and disease [6, 7]. Evidence pointed out that illness 
and drug treatment can lead to the compositional shift 
of GM. On the other hand, alteration of specific GM can 
significantly affect the host’s drug response and disease 
development [8]. For example, studies showed that dis-
ruption of the microbiota reduced the efficacy of tumor-
bearing mice to CpG-oligonucleotide immunotherapy 
and platinum chemotherapy [9, 10]. Gut microbes facili-
tating cancer treatment also extended to the targeted 
immunotherapies, such as cytotoxic T-lymphocyte-
associated protein 4 (CTLA-4) and anti-programmed 
cell death ligand 1 (anti-PD-L1) therapies [11, 12]. The 
influence of GM is also well refracting in CRC develop-
ment and its response to drug treatment [13, 14]. For 
example, recent reports showed that cancer chemothera-
peutic agents, including 5-FU, could increase the relative 
abundance of specific pathogens, e.g., Escherichia and 
Bacteroides fragilis [13, 15]. Another study indicated that 
altered gut microbiota might cause intestinal mucositis 
associated with 5-FU therapy [16]. Furthermore, recent 

reports also pointed out that dysbiosis reduces the antitu-
mor efficacy of 5-FU [17, 18]. On the other hand, the oral 
administration of probiotics ameliorated 5-FU-induced 
mucositis in mice [19]. The study further illustrated that 
combined 5-FU and probiotic treatment suppressed the 
inflammatory cytokines triggered by the 5-FU treatment 
in the colon of mice [19]. Based on these results, it is a 
feasible strategy to improve 5-FU therapeutic effect and 
make safer treatment through the modulation of GM 
composition.

Chinese herbal medicines have been served clinically as 
adjuvant therapy to reduce adverse effects and improve 
the efficacy of chemotherapeutic agents [20, 21]. Our 
previous studies found certain Chinese herbal medi-
cines, including saponins from Ginseng, Notoginseng, 
and Gynostemma pentaphyllum; polysaccharides from 
Lycium barbarum, Ganoderma lucidum and Poria cocos, 
exhibit prebiotic effects in both normal and diseased 
mouse models [22–25]. Poria cocos (PC, newly named 
Wolfiporia cocos) is a dietary herbal medicine commonly 
used to treat gastrointestinal diseases. Polysaccharide is 
the principal constituent and the main active ingredi-
ent of PC. Evidence showed that PC polysaccharides 
(PCP) possess anti-cancer, anti-inflammation, anti-aging, 
immunomodulation, and lipid regulation properties [26–
29]. Furthermore, our previous report suggests that PCP 
can effectively modulate GM and act as a prebiotic agent 
in mice [23]. In line with our study, a recent study also 
found that main metabolites of PC significantly altered 
the gut microbiota and the intestinal metabolites in mice 
[30]. Besides modulating the dysbiosis in the alcoholic 
hepatic steatosis mouse model, PCP also alleviated liver 
symptoms by inhibiting the ethanol-induced fungal over-
growth [31]. Here, we hypothesize that PCP might exert 
its prebiotic effects to minimize the adverse effects and 
improve the anti-cancer effect of 5-FU.

In this study, the colonic cancer model ApcMin/+ mice 
were treated with 5-FU with and without PCP. Polyps 
counting was used to evaluate the anti-cancer effect of 
5-FU with or without PCP. In addition, 16S rRNA gene 
sequencing of fecal DNAs, inflammatory cytokines test, 
immunohistochemistry, and fecal microbial transplanta-
tion (FMT) were conducted to investigate the potential 
prebiotic effects of PCP in alleviating adverse effects of 
5-FU by modulating the GM and gut microenvironment 
of ApcMin/+ mice.

Conclusion:  Our study showed that PCP could effectively improve the anti-cancer effect of 5-FU by attenuating its 
side effects, modulating intestinal inflammation, improving the gut epithelial barrier, and modulating the gut micro-
biota of ApcMin/+ mice.

Keywords:  Poria cocos polysaccharides, 5-fluorouracil, Colonic cancer, Gut microbiota
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Materials and methods
Animals and treatments
The ApcMin/+ mice (age 6–8  weeks) were purchased 
from Jackson’s Laboratory and bred in-house for 
heterozygous mice. The genotype of ApcMin/+ mice 
was identified using KAPA Mouse Genotyping Kit 
(Roche, USA). Mice were fed with PicoLab® Rodent 
Diet 20-5035 (LabDiet, USA). Mice were housed in 
a 12-h/12-h dark–light cycle facility and kept in the 
IVC equipment with free access to food and water. 28 
ApcMin/+ mice were randomly divided into four groups, 
i.e., the control group, PCP group, 5-FU group, and 
PCP + 5-FU group. Dry powder of PCP was dissolved 
in sterile distilled deionized (DD) water. The mice were 
gavage daily with 750 mg/kg of PCP or solvent control 
for four consecutive weeks. In addition, mice in the 
5-FU and PCP + 5-FU groups were injected intraperi-
toneally with 40 mg/kg of 5-FU for five successive days 
in the 2nd and 4th weeks (Fig. 1A). Food consumption 
and body weight were recorded weekly. At the end of 
the experiment, the mice were euthanized and sacri-
ficed following the approved guidelines of the Ethics 
Review Committee for Animal Research of the Macau 
University of Science and Technology.

Preparation of PCP herbal extracts
Water-soluble polysaccharides of Poria cocos (the 
content of polysaccharide is ≥ 30%) were purchased 
from Jiangsu Goodex Mushroom Biotech Co. Ltd. 
(Yancheng, Jiangsu, China). The quantitation of the 
PCP was performed as in the previous description 
[23]. PCP powder was dissolved in dd-water for the 
later experiments. 5-FU was purchased from Shanghai 
Macklin Biochemical Co., Ltd. (Shanghai, China).

Fecal samples collection and extraction of genomic DNA
Fecal samples were collected in the 2nd and 4th 
weeks of the experiment and stored at −80 ℃ for the 
later experiments. The total DNA was extracted using 
QIAamp DNA Stool Mini Kit (QIAGEN, German) 
based on the manufacturer’s protocol.

Animal dissection and polyp counting
The mice were terminated and dissected at the end of 
the experiment for polyp counting. Section of intestine 
from the cecal junction was collected, rinsed with cold 
PBS, and fixed in 10% formalin for the tissue section. 
Mucosal samples were collected from the colon and 
distal small intestine and frozen for later biochemical 
analyses. The rest portion of the intestine was cut open 
longitudinally, rinsed with cold PBS, and fixed in 10% 
formalin for 48  h, then stained with methylene blue. 

The number and size of the polyps were scored under 
the Olympus SZX10 microscope.

Total RNA preparation and quantitative reverse 
transcription polymerase chain reaction (qRT‑PCR).
The total RNAs were extracted from mucosal samples 
using TRNeasy Mini Kit (QIAGEN, Hilden, German), 
following the procedures from the manufacturer. The 
concentration of total RNA was determined by Nan-
odrop 2000C spectrophotometer (Thermo, USA). Fol-
lowing our previous description, the qRT-PCR reaction 
was carried out using Applied Biosystems ViiATM 7 
PCR system (Carlsbad, CA, USA) [32]. β-actin was used 
as the internal control to normalize the PCR reaction 
of each specific marker. The 2−ΔΔCt method was applied 
to calculate the fold change of relative gene expression. 
ΔΔCt = (Cttreatment_target gene—Cttreatment_reference gene)–
(Ctcontrol_target gene—Ctcontrol_reference gene). qRT-PCR was 
used to measure the expression of mucosal pro-inflam-
matory cytokines (IL-1β, IL-6, IL-18, INOS, TNF-α, and 
FOXP3) and anti-inflammatory cytokines (IL-4, IL-10, 
IL-12, and IL-13); tight junction proteins (ZO-1 and 
occluding) and adhesion molecules (VCAM-1, ICAM-1, 
E-cadherin, and N-cadherin). Specific primer sets were 
applied to quantify B. animalis and L. johnsonii using 
qPCR as described [32]. The primer sets used for the 
PCR analysis were listed in the Additional file 1: Table S1.

Histology and immunohistochemistry staining
H&E, Alcian blue staining, and immunohistochemical 
(IHC) staining were performed with 5  µm thick paraf-
fin sections following the standard protocol. Specific 
antibodies for IHC staining included the anti-lysozyme 
antibody (1:200, A0099, DAKO), E-cadherin (1:200, 
#3195S, CST), N-cadherin (1:100, 13,116, CST), ZO-1 
(1:200, 61–7300, Invitrogen), occludin (1:200, 40–4700, 
Invitrogen). VECTASTAIN® Elite® ABC Universal Kit 
(PK-6200, Vector) was used to hybridize the mentioned 
antibodies. Tissue sections were mounted and viewed 
under the Leica microscope. The images were taken with 
the Leica camera (DFC310 FX) and the Leica Application 
Suite software (Version 4.4.0, Switzerland).

Fecal DNA preparation, 16S RNA gene sequencing, 
and data analysis
For fecal GM analysis, sequencing of total genomic DNA 
was carried out using Illumina MiSeq (Illumina, San 
Diego), targeting the V3–V4 region of the 16S rRNA 
genes with barcoded 515F and 806R universal prim-
ers [33]. The detailed sequencing procedures were per-
formed as previously described [34].
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In vitro culture and transplantation of Lactobacillus 
johnsonii and Bifidobacterium animalis
L. johnsonii (1.3348, China General Microbiological Cul-
ture Collection Center) and B. animalis (1.1259, Guang-
dong Microbial Culture Collection Center) were acquired 
and cultured in the designated growth medium (Addi-
tional file 1: Table S2) and kept in an anaerobic chamber 

(Whitley A35 Workstation, Don Whitley Scientific Lim-
ited, UK) in 5% CO2, 10% H2, and 85% N2 according to 
Liao et al., 2021 [35]. Bacteria were collected by centrifu-
gation at 5000 rpm for 5 min and diluted to 1 × 109 cells/
ml for further experiments. In the microbes transplanta-
tion experiment, 20 ApcMin/+ mice (6–8 weeks old) were 
randomly divided into four groups: vehicle control, 5-FU, 

Fig. 1  PCP enhanced the anti-cancer effects of 5-FU in ApcMin/+ mice. A The treatment scheme; B The experimental mice’s body weight and food 
consumption. C Effect of PCP and 5-FU on the total number of polyps; and the number and size distribution of the intestinal polyps. The data are 
presented as the mean ± SD. *p < 0.05, ** p < 0.01, n = 7
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B. animalis + 5-FU, and L. johnsonii + 5-FU. 2 × 108 live 
bacteria from each species were gavaged to mice every 
other day for four consecutive weeks (Fig.  6B). 5-FU at 
40 mg/kg was injected intraperitoneally to mice for five 
successive days in the 2nd and 4th weeks.

Statistical analysis
The statistical analysis and graphical presentation of data 
were performed by GraphPad Prism (8.0). The signifi-
cant changes were determined by One-way ANOVA (for 
parametric data) and Kruskal–Wallis (non-parametric 
data) tests. Bonferroni and Dunn-Bonferroni tests were 
performed for parametric and non-parametric multiple 
comparison p values correction.

Results
PCP treatment enhanced the anti‑cancer effects of 5‑FU 
in ApcMin/+ mice
To investigate the potential synergistic effect of PCP 
toward the anti-cancer effect of 5-FU, 6–8  weeks old 
ApcMin/+ mice were treated with 5-FU with or without 
PCP for four weeks. The treatment scheme is illustrated 
in Fig. 1A. There were no significant differences in body 
weight and food consumption among the groups in the 
1st and 2nd weeks. However, the body weight and food 
consumption of the 5-FU and PCP + 5FU groups started 
to decline from the 3rd week and on. The decline was 
minimized in the group co-administrated PCP and 5-FU 
by the end of the experiment (Fig. 1B). Importantly, PCP 
treatment enhanced the anti-cancer effect of 5-FU based 
on the total number and the size distribution of the intes-
tinal polyps in the mice (Fig. 1C).

PCP improved the intestinal epithelial barrier of the control 
and 5‑FU‑treated ApcMin/+ mice
The cancer-prone ApcMin/+ mice are known to carry 
dysfunction of the gut barrier and appear to be associ-
ated with spontaneous intestinal polyps formation [36]. 
The H&E staining of the intestinal villi showed various 
degrees of damage in the Ctrl and 5-FU groups compared 
to the PCP and PCP + 5-FU groups (Fig.  2A). Moreo-
ver, Alcian blue and lysozyme staining revealed that the 
number of Paneth cells and goblet cells decreased in the 
Ctrl and 5-FU groups. PCP alone or co-treatment with 
5-FU restored the number of Paneth cells and goblet cells 
(Fig.  2A, Fig. S1). IHC staining and qRT-PCR showed 
that tight junction molecules occludin and ZO-1 were at 
low levels in the Ctrl and 5-FU groups and markedly ele-
vated upon PCP treatment in the PCP and PCP + 5-FU 
mice (Fig. 2B and )C). In addition, the mRNA expressions 
of ICAM-1 and VCAM-1 were significantly induced 
upon 5-FU treatment, but treatment with PCP + 5-FU 
resumed the level close to the untreated control (Fig. 2C). 

We also evaluated the expression of the adhesion mol-
ecules, including E-cadherin and N-cadherin. Their 
expressions are the makers of cancer progression and 
prognosis. The results showed that 5-FU treatment 
decreased E-cadherin but increased N-cadherin. On the 
other hand, either PCP or PCP-5-FU treatment substan-
tially enhanced the expressions of E-cadherin and down-
regulated N-cadherin in the treated mice (Fig. 2C).

PCP reversed the inflammatory gut environment disturbed 
by 5‑FU treatment
Stimulation of intestinal inflammation and causing 
mucositis are the main side-effects of 5-FU. Higher 
expression of pro-inflammatory cytokines is usually 
involved in the progression of mucositis. Therefore, we 
evaluated the expressions of the mucosal pro-inflamma-
tory and anti-inflammatory cytokines using the qRT-PCR 
test. Our results showed that treatment with PCP alone 
markedly (p < 0.01) increased the expression of anti-
inflammatory cytokines (IL-4, IL-10, IL-12, and IL-13) 
compared to the control mice (Fig.  3A). Conversely, 
5-FU treatment decreased anti-inflammatory cytokines’ 
expression while drastically increasing pro-inflamma-
tory cytokines’ expression (Fig.  3A and B). Results also 
clearly showed that the intervention of PCP can overturn 
the upregulated IL-1β, IL-6, IL-18, iNOS, TNF-α, and 
FOXP3, and the down-regulated IL-4, IL-10, IL-12, and 
IL-13 that caused by the treatment of 5-FU (Fig. 3A and 
B).

PCP alone and in combination with 5‑FU modulated GM 
diversity and composition of the mice
To investigate the role of PCP in regulating GM diver-
sity and composition of mice treated with 5-FU, fecal 
genomic DNA was extracted from the mice and exe-
cuted 16S rRNA gene sequencing. Alpha-diversity 
analysis showed that mice treated with 5-FU alone or 
combined with PCP lowered the diversity and rich-
ness of GM compared to the control and PCP groups 
(Fig.  4A). Moreover, the PCA plot showed the 5-FU 
and 5-FU + PCP groups deviated from the Ctrl and 
PCP clusters. However, PCP intervention brought the 
5-FU cluster closer to the control group (Fig. 4B). The 
taxonomic comparison showed that Bacteriodetes, Fir-
micutes, and Proteobacteria were the dominant phyla 
among all the experimental groups (Fig.  4C). 5-FU 
treatment decreased the relative abundance of Bacte-
roidetes, while clearly increasing the relative abundance 
of Deferribacteres, Eukaryota, and Verrucomicrobia 
(Fig. 4C). LEfSe analysis showed that the increase of the 
Verrucomicrobia contributed to the enrichment of the 
family of Akkermansiaceae (Fig. 4D). Besides, the fami-
lies of Enterobacteriaceae and Gammaproteobacteria 
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Fig. 2  PCP improved the intestinal epithelial barrier damaged by 5-FU. A H&E, Alcian blue, and lysozyme stains of the intestine. Alcian blue staining 
was used to detect the goblet cells. Anti-lysozyme staining was used to detect Paneth cells. The dark brown staining at the bottom of the crypts 
indicates the location of Paneth cells; B IHC staining of occluding and ZO-1. The positive stains were presented in dark brown staining. Scale 
bar = 100 μm; C The mRNA expressions of E-cadherin, N-cadherin, occluding, ZO-1, ICAM-1, and VCAM-1 by qRT-PCR; Data are presented as the 
mean ± SD, n = 3. *p < 0.05, ** p < 0.01, *** p < 0.001
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were significantly increased in the 5-FU group (Fig. 4D). 
As a note, expansion of the Enterobacteriaceae is asso-
ciated with inflammation and CRC [37]. Additionally, 
the family of Lactobacillales was significantly enriched 

in the PCP + 5-FU group, which could result from 
the enrichment of Lactobacillus (Fig.  4D). We also 
observed enhancement of the families Barnesiellaceae 
and Anaeroplasmataceae in the PCP + 5-FU group 
(Fig. 4D).

Fig. 3  Expressions of mucosal cytokines in the guts of the mice treated with PCP, 5-FU, or PCP + 5-FU. The expressions of anti-inflammatory 
cytokines (A) and pro-inflammatory cytokines (B) were measured by qRT-PCR. The data are presented as the mean ± SD, n = 3. *p < 0.05, ** p < 0.01, 
*** p < 0.001
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Fig. 4  PCP treatment modulated the gut microbial diversity and composition in mice treated with 5-FU. A Alpha diversity analysis of the gut 
microbiota from each group. B PCA plots are applied to display the clustering of gut microbiota. C Average relative abundance of the dominant 
phyla. The y-axis represents the average percentages of OTUs reads. Different colors display significant changes in abundant phylum taxa of 
different groups. D The overall exhibition of LEfSe analysis by using taxonomic cladograms
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PCP alone or co‑administration with 5‑FU increased 
the relative abundance of beneficial bacteria 
while decreased the potential pathogens
According to the previous reports, 5-FU tends to 
increase the relative abundance of potential pathogens 
while inhibiting beneficial bacteria growth. Our result 
showed that PCP treatment alone or with 5-FU boosted 
the total beneficial bacteria while suppressing the poten-
tially pathogenic bacteria in the treated mice (Fig.  5A, 
Additional file  1: Tables S3, and S4). Heatmap analy-
sis showed that 5-FU stimulated the growth of certain 
potential pathogenic bacteria, including Alistipes finegol-
dii, Alistipes massiliensis, Alistipes spp., Citrobacter spp., 
Desulfovibrio spp., and Desulfovibrio desulfuricans. PCP 
intervention, by and large, reversed the effect of 5-FU 
on these potential pathogens (Fig. 5A and B). Addition-
ally, some beneficial bacteria, such as Bacteroides acidi-
faciens, Bacteroides intestinihominis, Bifidobactrium 

choerinum, Butyricicoccus pullicaecorum, Lactobacillus 
johnsoni, Eubacterium spp. were reduced in the 5-FU 
treated mice; while increased in the PCP and PCP + 5-FU 
groups (Fig. 5B). Moreover, Pearson’s correlation analysis 
revealed a clear positive correlation between the potential 
pathogens and the pro-inflammatory cytokines (IL-1β, 
TNF-α, iNOS, and FOXP3). And a negative correlation 
between the potential pathogens and the anti-inflamma-
tory cytokines (IL-4, IL-10, and IL-12). Interestingly, the 
results also showed a positive relationship between the 
beneficial bacteria and the anti-inflammatory cytokines 
and a negative relationship between the beneficial bacte-
ria and the pro-inflammatory cytokines (Fig. 5C).

Colonization of Bifidobacterium animalis and Lactobacillus 
johnsonii reduced the polyp counts in ApcMin/+ mice
To further explore whether PCP-induced genera are 
responsible for the improvement of the anti-cancer 

Fig. 5  The effects of PCP treatment on beneficial and potential pathogens and the correlation between bacteria and the expression of 
inflammatory cytokines. A The proportion of potential pathogens and beneficial bacteria from detected bacteria. B Heatmap showing the relative 
abundance in the respective groups. C Pearson’s correlation among the bacterial species and inflammation-associated cytokines
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efficacy of 5-FU, we selected the candidate bacteria for 
bacteria transplantation. From the 16S sequencing data, 
we identified two bacteria genera, Bifidobacterium and 
Lactobacillus, that displayed significant responses to 
PCP treatment, alone or in the presence of 5-FU. At the 
4-week treatment time point, we observed diminish-
ing OTUs of Bifidobacterium and Lactobacillus in most 
experimental groups (Fig. 6A). This phenomenon might 
be associated with the increased number of polyps in the 
mice. Based on these data, we selected two bacteria from 
each genus, the Bifidobacterium animalis and Lactobacil-
lus johnsonii, to engage in the implantation experiment. 
The colonization of the implanted bacteria was moni-
tored by PCR with each specific primer sequence. The 
data showed that both implanted bacteria successfully 
colonized the recipient ApcMin/+ (Fig. 6C). The data also 
showed that 5-FU suppressed the growth of B. animalis 
and L. johnsonii (Fig. 6C). Moreover, transplantation of B. 
animalis and L. johnsonii significantly reduced the num-
bers and size of the polyps compared to the untreated 
control and 5-FU groups (Fig. 6D).

Discussion
5-FU is a common chemotherapeutic agent for treating 
various cancers, especially colon cancer. While treating 
cancer, 5-FU therapy also evokes multiple adverse effects 
in patients and hampers the efficacy of the treatment. In 
this study, we present evidence that the adverse effects of 
5-FU can be circumvented by co-treatment with polysac-
charides derived from the dietary herbal medicine Poria 
cocos, in ApcMin/+ mice. First, we found that PCP could 
effectively alleviate the weight loss and food consump-
tion reduction associated with 5-FU treatment. In addi-
tion, PCP also significantly improves the efficacy of 5-FU 
against polyp formation in mice treated with PCP + 5-FU 
(Fig.  1). To understand the enhancing effect of PCP on 
the effectiveness of 5-FU, we examined intestinal integ-
rity, immune response, and gut microbial composition in 
mice given various treatments.

The gut aligns with an epithelial layer overlaid with a 
mucosal layer for housing symbiotic microorganisms and 
suppressing the access pathobionts. The integrity of the 
intestinal epithelial barrier is guided by the tight junc-
tions of the epithelial cells. The destruction of intestinal 
barrier integrity increases intestinal permeability, lead-
ing to microbes invasion, exacerbating inflammation, and 
promoting CRC risk. Our study showed that 5-FU treat-
ment could decrease the expression of the intercellular 
cell adhesion protein complex and reduce the number of 
goblet and Paneth cells. On the other hand, PCP treat-
ment restored the function of goblet cells and Paneth 
cells, enhanced the expression of intercellular cell adhe-
sion protein complex, and further stabilized and rebuilt 

the intestinal epithelial barrier. Moreover, PCP effectively 
reversed the shift of N- to E-cadherin for the control and 
5-FU treated ApcMin/+ mice. High N-cadherin and low 
E-cadherin indicate poor prognosis and a hallmark of 
epithelial-mesenchymal transition of tumors [38].

Macrophages are the most prominent innate immune 
cells in the gut and carry two phenotypical types. M1 
macrophages produce proinflammatory cytokines such 
as TNF-α, IL-1β, IL-6. In contrast, M2 macrophages pro-
duce anti-inflammatory cytokines such as IL-4, IL-10, 
and IL-13. However, the phenotypic features of mac-
rophages are extremely plastic and can be shifted upon 
microenvironmental signals. The imbalance of M1/
M2 macrophages is associated with various pathologi-
cal conditions [39]. ApcMin/+ mice are known to inherit 
inflamed intestinal tract [36]. In this study, we found 
that 5-FU treatment worsened the state of the intestinal 
tract of ApcMin/+ mice by lowering the anti-inflammatory 
cytokines while markedly boosting the pro-inflammatory 
cytokines compared to the untreated control. This find-
ing is aligned with the frequent recurrence of intestinal 
mucositis in patients undergoing 5-FU [5]. Interestingly, 
PCP treatment reversed the shift by reducing the expres-
sion of pro-inflammatory cytokines (e.g., TNF-α, IL-1β, 
IL-6, and iNOS) and increasing the expression of anti-
inflammatory cytokines (e.g., IL-4 IL-10, and IL-13) com-
pared to the control group (Fig. 3). Our results echo the 
previous reports that PCP possesses anti-inflammatory, 
anti-cancer, and immunomodulation effects [26–28].

CRC is a multifactorial disease influenced by both 
genetic and environmental factors. However, a large body 
of literature has demonstrated the role of gut microbi-
ota in cancer initiation and progression [40]. This study 
detected a few signature gut bacteria associated with 
inflammation. At the phylum level, 5-FU treatment sig-
nificantly increases the relative abundance of Verrucomi-
crobia, and the increment contributed to the marked 
increase of Akkermansia muciniphila (Fig.  4C and 5B). 
A. muciniphila was enriched in CRC patients and des-
ignated as a CRC biomarker [41]. The Deferribacteres 
was also elevated in the 5-FU-treated mice in our study. 
We found that the increment is mainly contributed to 
the increase of the Desulfovibrio desulfuricans (Fig.  4B 
and 5B). Deferribacteres, a sulfate-reducing bacteria 
(SRB), has been linked to intestinal inflammation in dif-
ferent mouse models [32, 42, 43]. SRB produces hydro-
gen sulfide, a potential genotoxic, cytotoxic agent, and 
can cause inflammation and cancer in the gut [44, 45]. 
Moreover, 5-FU increased the growth of a few other 
potential pathogens, e.g., Shigella sonnnei, Alistipes spp., 
and Citrobacter spp., that were closely associated with 
gastrointestinal diseases [46–49]. Meanwhile, 5-FU treat-
ment decreased a few SCFA-producing bacteria, such as 
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Fig. 6  Colonization of B. animalis and L. johnsonii improved the anti-cancer effect of 5-FU in ApcMin/+ mice. A Presentations of the OTUs taxa 
of Bifidobacterium and Latobacillus in 2 and 4 weeks. B The treatment schemes. Detailed procedures are listed under M&M; C Measurement 
of colonized B. animalis (left panel) and L. johnsonii (right panel) in the guts of four groups of experimental mice. Quantitation of bacteria was 
performed by qPCR on fecal DNA collected 2 and 4 weeks from each treatment group; D The total number and the distribution of polyps in the 
experimental mice. Data are presented as the mean ± SD, n = 5. *p < 0.05, ** p < 0.01, *** p < 0.001
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Bacteroides intestinihominis, Butyricicoccus pullicaeco-
rum, Lactobacillus johnsoni, Bifidobactrium choerinum, 
Eubacterium sp. SCFAs-producing bacteria plays essen-
tial roles in maintaining gut epithelial barrier integrity 
and intestinal immunity [50]. Our findings are in line 
with other reports in which 5-FU is found upregulating 
potential pathogens while inhibiting the beneficial bac-
teria in the gut [15, 51, 52]. Notably, our data showed 
that the intervention of PCP could reverse the disturbed 
GM composition. Furthermore, the combined treatment 
of PCP and 5-FU significantly increased the beneficial 
bacteria while decreasing potential pathogens compared 
with 5-FU alone. These results imply that one of the 
mechanisms of PCP to improve the anti-cancer effect of 
5-FU might be through its modulation of the dysbiosis in 
the 5-FU treated ApcMin/+ mice. In the microbial trans-
plant experiment, we demonstrated that colonization of 
L. johnsonii or B. animalis enhance the anticancer effect 
of 5-FU (Fig. 6D). We also observed that 5-FU treatment 
significantly reduced the colonization of both implanted 
bacteria, reiterating the overall toxic effects of 5-FU on 
beneficial bacteria, especially on SCFA-producing bac-
teria. SCFAs are the important metabolites from GM 
fermentation. Many studies showed that SCFAs possess 
prominent bioactivities in anti-inflammatory reactions, 
gut barrier maintenance, and renew the colonic epithelia 
cells [53–55]. Our previous study showed that activation 
of genes encoded biogenesis and metabolic functions in 
B. animalis might have contributed to the reduction of 
polyps burdening in ApcMin/+ mice [35]. Among many 
probiotic functions [56], an early report revealed that L. 
johnsonii was deficient in the cancer-prone mouse col-
ony, while higher in abundance in a more cancer resistant 
mouse colony. The study further showed that administra-
tion of L. johnsonii reduced inflammation and genotoxic-
ity to mice from the cancer-prone colony [57].

Conclusions
PCP alleviates the adverse effects and improves the effi-
cacy of 5-FU in ApcMin/+ mice by improving gut barrier 
integrity, reversing the inflammatory immune response, 
and balancing the gut microflora’s dysbiosis. In addition, 
PCP alone exerts a strong prebiotic effect on the polyp 
baring ApcMin/+ mice. Our findings imply that PCP has 
great potential to serve as an adjuvant drug in enhanc-
ing the efficacy of 5-FU as a chemotherapy agent for CRC 
and other cancer types.
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