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Panax notoginseng extract and total saponin 
suppress diet‑induced obesity and endoplasmic 
reticulum stress in epididymal white adipose 
tissue in mice
Yi Tan1, Xutao Zhang1, Yan Zhou1, Lingchao Miao1, Baojun Xu2, Haroon Khan3, Yitao Wang1, Hua Yu1 and 
Wai San Cheang1*    

Abstract 

Background:  Investigation on protective effects of Panax notoginseng against obesity and its related mechanisms 
is incomplete. Present study aimed to investigate the potential anti-obesity effect of the total saponins (PNS) and 
ethanolic extract of P. notoginseng (PNE).

Methods:  Six-week-old male C57BL/6J mice received 45% kcal fat diet for 12 weeks to induce obesity. Oral adminis-
tration of PNS and PNE at 20 mg/kg/day was applied for the last 4 weeks in the obese mice. Lipid profile was deter-
mined by ELISA. Histological examination was performed in liver and fat tissues. Protein levels were measured by 
Western blot.

Results:  PNS and PNE did not cause weight loss. PNE but not PNS decreased the mass of epididymal and retroperito-
neal white adipose tissue, accompanied by a reduction in adipocyte hypertrophy. PNS and PNE improved lipid profile 
by reducing the concentrations of triglyceride, total cholesterol and low-density lipoprotein cholesterol in plasma or 
liver samples. PNS and PNE also relieved fatty liver in obese mice. PNS and PNE inhibited expression and phosphoryla-
tion of endoplasmic reticulum (ER) stress-responsive proteins in hypertrophic adipose tissue.

Conclusions:  PNS and PNE can regulate ER stress-mediated apoptosis and inflammation to alleviate obesity.
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Background
Obesity is a growing health crisis worldwide, particu-
larly for developing countries. According to data from 
the World Health Organization, over 4  million people 
die each year from being overweight or obese. Obesity 
defined as abnormal of excessive fat accumulation plays a 
significant role in the occurrence of many deadly diseases 

such as cardiovascular diseases, type 2 diabetes and can-
cers [1–3]. Importantly, adipose tissue, an inert tissue 
that stores energy in the form of lipids [4], is considered 
as a metabolic and endocrine organ to modulate immune 
response, lipid metabolism and other critical biological 
processes [5]. In obese individuals, excessive fat accumu-
lation induces chronic local inflammation and cell necro-
sis. This event is characterized by crown-like structure 
that is formed by the recruitment of macrophages in adi-
pose tissue histologically [6, 7]. Furthermore, adipocytes 
in obesity are subjected to a variety of stresses and cell 
dysfunction [8]. Overconsumption of food or excessive 
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lipid uptake causes other non-adipose tissue to suf-
fer lipotoxicity with ectopic lipid accumulation, thereby 
developing fatty liver, atherosclerosis, and so on [9, 10].

Unfolded protein response (UPR) is a self-protective 
stress response to reduce the accumulation of unfolded 
or misfolded proteins in endoplasmic reticulum (ER) 
[11]. However, when the steady internal state cannot be 
maintained in ER for prolonged time, ER stress will trig-
ger cell death [12]. Previous studies have strongly sup-
ported that chronic activation of ER stress contributes 
to the development of insulin resistance, lipid metabo-
lism disorders, and chronic inflammation in adipocytes 
in obesity [13–15]. ER homeostasis play a crucial regu-
latory role for normal cellular function and survival; and 
ER stress interplays with multiple perturbations such as 
inflammation, oxidative stress, and apoptosis in patho-
logical conditions, as for example, in obesity and cardio-
vascular diseases [16, 17].

Panax notoginseng (Burk) F.H. Chen (Sanqi in Chinese) 
is a member of the Araliaceae family and is a well-known 
traditional Chinese herb with increasing popularity in 
the West. In traditional Chinese medicine, P. notoginseng 
has the effects of promoting blood circulation, dissolving 
stasis, stopping bleeding, reducing swelling, and reliev-
ing pain [18]. P. notoginseng contains various ingredi-
ents including saponins, flavonoids, and so on; whereas 
P. notoginseng saponins (PNS) are well recognized as the 
major bioactive components for multiple health ben-
efits. Of note, these components have positive effects to 
combat against cardiovascular diseases and metabolic 
disorders. PNS can effectively enhance glucose uptake 
to improve glucose metabolism in ob/ob mice and high-
fat diet (HFD)-induced obese mice through 5′  adeno-
sine monophosphate kinase (AMPK) activation [19]. 
Besides, PNS can attenuate coronary heart disease and 
atherosclerosis [18, 20]. PNS are also shown to regulate 
lipid metabolism with anti-obesity effects as reported in 
recent studies, reducing the volume of adipose tissue and 
mitigating hyperlipidemia through regulation of signaling 
pathways like leptin, AMPK and peroxisome proliferator-
activated receptor (PPAR) [21, 22].

Previous studies have proved that P. notoginseng can 
regulate lipid metabolism and exert anti-obesity effects 
in addition to the treatment of type 2 diabetes and car-
diovascular diseases; nevertheless, pharmacological 
studies mostly focus on PNS or monomer notoginseno-
sides. In addition, there are limited studies of P. notogin-
seng on regulating obesity-related ER stress. In present 
study, we aimed at evaluating the anti-obesity effects of 
the ethanolic extract of P. notoginseng (PNE) to com-
pare with PNS in HFD-induced obese mice and explor-
ing the underlying mechanism. We considered ER stress 
as a target and thus the regulation of P. notoginseng on 

ER stress in epididymal white adipose tissue (eWAT) was 
examined.

Methods
Extraction of Panax notoginseng and identification 
of ethanolic extract (PNE) and total saponins of Panax 
notoginseng (PNS)
Extraction of P. notoginseng was prepared and quantita-
tive analysis of PNE and PNS was performed as stated in 
our previous article [23]. In brief, the dried P. notoginseng 
powder was extracted with 95% ethanol and the ethanol 
was removed by rotary evaporation. Finally, the extract 
was freeze-dried to obtain PNE. PNS was obtained from 
Yunnan Yunke Pharmaceutical Co. Ltd. (China). The 
component analysis of PNS and PNE was determined by 
Waters ACQUITY-UPLC CLASS system (Waters Corp., 
USA) with an ACQUITY UPLC BEH phenyl column 
(150 mm × 2.1 mm, 1.7 μm) maintained at 45 °C to quan-
tify the contents of notoginsenoside R1, ginsenoside Rb1, 
ginsenoside Re, ginsenoside Rg1, and ginsenoside Rd.

Diet‑induced obese model and herbal treatments
Male C57BL/6J mice were maintained in a tempera-
ture-controlled conditions (22–24  °C) with a 12-h light 
and 12-h dark cycle and were fed with 45 kcal% fat diet 
(D12451, Research diets, Sysebio, China) at 6 weeks old 
for 12 weeks. The obese mice were administered with 
water (vehicle), PNS, or PNE at 20  mg/kg body weight 
by oral gavage for next four weeks. Mice of control group 
were fed with standard-chow diet and administered with 
vehicle. The procedures for care and use of animals were 
approved by the Animal Research Ethics Committee, 
University of Macau. Mouse body weight and food intake 
were measured before and after the experiments.

Biochemical analysis in plasma and liver
Mice were sacrificed by CO2 asphyxiation. Blood sam-
ples were drawn from the inferior vena cava and col-
lected in heparin-coated microcentrifuge tubes. Plasma 
was separated by centrifugation at 3000 rpm at 4  °C for 
10  min. Whole liver was isolated from each mouse and 
weighed. Plasma and liver samples were kept at − 80 ºC 
until further assay. The levels of total cholesterol and tri-
glyceride in plasma and liver were tested with enzymatic 
methods by cholesterol assay kit and triglyceride assay kit 
respectively (Stanbio Laboratory, USA) according to the 
manufacturer’s instructions. The levels of high-density 
lipoprotein cholesterol (HDL-C) and low-density lipo-
protein cholesterol (LDL-C) were measured using the 
HDL-C and LDL-C assay kits (Nanjing Jiancheng Bio-
engineering Institute, China). Plasma levels of alanine 
aminotransferase (ALT) and aspartate aminotransferase 
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(AST) were determined by ALT and AST assay kits (Nan-
jing Jiancheng Bioengineering Institute).

Histological examination and immunohistochemistry
Epididymal white adipose tissue (eWAT) and liver were 
fixed in 4% paraformaldehyde, embedded in paraf-
fin wax and sliced into Sect.  (4  μm). After staining by 
hematoxylin and eosin (H&E), eWAT and liver sections 
were observed by light microscope. The images at 200 × 
magnification were acquired to evaluate histopathologi-
cal changes by Image J software (National Institutes of 
Health, USA), determining the number and cell size of 
adipocytes. The result was calculated as following: the 
mean cell size = the total area of the cells ÷ the number 
of the cells. Hepatic sections were stained with Oil Red 
O and the areas of Oil Red O staining in captured images 
were determined using Image-Pro Plus software (Media 
Cybernetics, USA). F4/80 and CD68 antibodies was 
applied to assess the presence of macrophage infiltra-
tion in eWAT and liver respectively (Servicebio, China). 
Apoptosis in adipose tissue sections was evaluated by ter-
minal deoxynucleotidyl transferase dUTP nick end labe-
ling (TUNEL) staining (Servicebio, China). The images at 
200 × or 400 × magnification were acquired to evaluate 
histopathological changes.

Western blot assay
Liver and eWAT collected from mice were snap frozen in 
liquid nitrogen and were subsequently homogenized with 
RIPA solution (Beyotime, China) containing PhosSTOP 
and cOmplete Protease Inhibitor Cocktail (Roche, Ger-
many) on ice. The supernatants were collected after cen-
trifugation at 15,000 rpm for 30 min at 4 °C and the total 
protein contents were measured by BCA Protein assay 
kit (Beyotime). Equal amounts of proteins (15  µg) were 
separated by 8–10% SDS-PAGE gels and electrotrans-
ferred onto PVDF membrane (Millipore, USA). All mate-
rials for SDS–PAGE was acquired from Bio-Rad (USA). 
After blocking at room temperature with 5% non-fat milk 
powder (Bio-Rad) which dissolved in Tris buffered saline 
Tween (TBST) for 2  h, the membranes were incubated 
overnight with the appropriate primary antibodies at 4 °C 
followed by incubation with the appropriate secondary 
antibodies for 2  h at room temperature. Specific bind-
ing sites were detected by enhanced chemiluminescence 
detection solutions (Thermo Fisher, USA) and ChemiDoc 
MP Imaging System (Bio-Rad). Image Lab (Bio-Rad) was 
used to quantify the target protein expressions. The pri-
mary antibodies against GAPDH, SAPK/JNK, p-SAPK/
JNK (Thr183/Tyr185), CHOP, GRP78, p38, p-p38 
(Thr180/Tyr182), and caspase-3 were obtained from 
Cell Signaling Technology (USA); ATF6 was supplied by 
Abcam (UK); and GRP78 was acquired from Santa Cruz 

Biotechnology (USA). The secondary anti-rabbit antibod-
ies and anti-mouse antibodies were obtained from Cell 
Signaling Technology.

Statistical analysis
All data were presented as mean ± S.E.M from three or 
more independent experiments. Differences between 
groups were analyzed using one-way analysis of variance 
(ANOVA) by GraphPad Prism (USA). P values < 0.05 
were considered statistically significant difference.

Results
Effects of PNS and PNE on plasma lipid profile and fat mass 
in obese mice
The obesity model was successfully constructed as the 
body weight in diet-induced obese (DIO) mice was 20% 
greater than chow diet-fed mice at the end of 16 weeks, 
i.e. 34.23 ± 1.15  g and 26.98 ± 1.04  g respectively. Like-
wise, tissue weights including liver, epididymal white adi-
pose tissue (eWAT), retroperitoneal white adipose tissue 
(rWAT), interscapular white adipose tissue (iWAT) and 
interscapular brown adipose tissue (iBAT) were remark-
ably increased when compared to the control lean mice 
(Fig. 1A and B). Oral administration with PNS and PNE 
at 20 mg/kg/day for 4 weeks did not alter body weight or 
liver weight in diet-induced obese (DIO) mice. For the 
visceral white adipose tissue tissues, chronic treatment 
of PNS showed slight but insignificant diminishment of 
eWAT, rWAT and iWAT whilst PNE had more potent 
effects to reduce the fat mass in eWAT, rWAT and iWAT. 
Both of them had no effect on the weights of interscapu-
lar brown adipose tissue (iBAT), as well as food and calo-
rie intake (Fig. 1C and D).

To examine the improvement of PNS and PNE treat-
ments in metabolic disturbance, several important bio-
chemical indicators in plasma were tested. Comparing 
with the control mice, chronic intake of high-fat diet 
resulted in elevations in the plasma levels of triglyceride, 
total cholesterol and LDL-C (Fig.  2A–C), whereas the 
level of HDL-C was not affected (Fig. 2D). PNE treatment 
was effective to decrease plasma triglyceride and LDL-C 
concentrations relative to the obesity model group but 
PNS only reduced plasma LDL-C level. On the other 
hand, the plasma ALT and AST contents in obese mice 
were increased as compared with control mice, indicat-
ing possible liver function in obesity (Fig. 2E and F). PNE 
treated group significantly decreased both ALT and AST 
levels in plasma but PNS did not exert remarkable effect.

Effects of PNS and PNE on fatty liver
Liver is a target organ for lipid metabolism, so we exam-
ined whether PNS and PNE treatments can affect hepatic 
morphology and fat accumulation in obese mice. In 
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consistent with the above data on liver weight, livers were 
enlarged in obesity (Fig. 3A). Moreover, the livers in DIO 
mice appeared yellowish red, unlike the bright red color 
observed in the livers of lean mice. PNS and PNE did not 
reduce the size of liver but reversed the color to a compa-
rable extent as the control. Hepatic triglyceride and total 
cholesterol levels were increased in DIO mice which can 
be reversed by PNE and PNS respectively (Fig.  3B and 
C). The liver segments from normal mice showed regular 
structure of hepatocyte and hepatic lobule. The cells are 
compactly arranged and its structure is clear and intact 
(Fig. 3D). In contrast, the liver cells in the vehicle-treated 
obese mice were cloudy swelling and loosely arranged 
and vacuolization of cytoplasm was found. These histo-
pathological manifestations of liver tissue were reversed 

by the 4 week-treatment of PNS and PNE. The results of 
oil red staining showed an increased number of intracel-
lular lipid droplets in DIO mice which was suppressed by 
both PNS and PNE treatments (Fig. 3E and F). Immuno-
histochemical staining with anti-CD68 antibody (brown) 
showed that PNS and PNE reversed DIO-induced mac-
rophage infiltration in the liver (Fig. 3G). Taken together, 
these data suggested that PNS and PNE could attenu-
ate hepatic lipid accumulation and liver damage in DIO 
mice.

Effects of PNS and PNE on adipocyte size and adipose 
macrophage infiltration
As mentioned above, PNS and PNE decreased the 
fat mass in obese mice. The effects of PNS and PNE in 

Fig. 1  PNS and PNE reduce fat mass. The effects of PNS and PNE treatment (20 mg/kg/day, 4 weeks) on the body weight (A), tissue weight (B), daily 
food intake (C) and calorie intake (D) in DIO mice. Control mice were fed with normal chow diet (3.8 kcal/g) while the other groups were fed with 
45% kcal% high-fat diet (4.7 kcal/g). Values are the means ± SEM (n = 6); *p < 0.05, DIO vs. Control; #p < 0.05, PNS vs. DIO and PNE vs. DIO
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eWAT were explored specifically here. After high-fat 
feeding, the average adipocytes size of eWAT was sig-
nificant bigger than control group (Fig. 4A and B). Addi-
tionally, the distribution trend of cell size was evaluated. 
The lean mice had a greater number of small adipocytes 
(< 2000 μm²) while the distribution shifted to larger size 
in DIO group in 6000–16,000  μm² (Fig.  4C). In DIO 
mice, crown-like structures were formed, representing 
macrophage infiltration in dying or dead adipocytes; but 
no crown-like structures were found in all eWAT samples 
in control, PNS or PNE-treated DIO mice. Immunohis-
tochemical staining of eWAT with anti-F4/80 antibody 
showed that PNS and PNE reversed DIO-triggered mac-
rophage infiltration in the crown-like structure of adi-
pose tissue (Fig. 5A). TUNEL-positive cells was increased 
in DIO mice and were decreased by both PNS and PNE 
treatments (Fig.  5B). These results supported that PNS 
and PNE improved the existential state of adipocytes.

Effects of PNS and PNE on ER stress‑mediated apoptosis 
and inflammation
In this section, the action mechanism of PNS and PNE 
improving obesity were explored. First of all, GRP78, 
ATF6 and JNK, used as indicators of cells undergoing 
ER stress, were measured by Western blotting. Protein 
expressions of GRP78 and activated ATF6 (Fig.  6A–C) 
and phosphorylation of JNK at Thr183/Tyr185 (Fig.  6D 
and E) were upregulated in eWAT from DIO mice while 
PNS and PNE reversed these changes, inhibiting ER 

stress. Like JNK, p38 MAPK modulates inflammation in 
related to ER stress. Phosphorylation of p38 at Thr180/
Tyr182 was downregulated by PNE while PNS showed 
minor but insignificant effect (Fig.  6D and F). CHOP/
caspase-3 is involved in ER stress-induced apoptosis. The 
upregulation of CHOP and caspase-3 was reduced by 
PNS and PNE in DIO mice (Fig. 6G–I).

Discussion
The present study examined the anti-obesity potential of 
PNS and PNE, and explored the mechanism of obesity-
related ER stress and cell apoptosis in DIO mice. Posi-
tive results were obtained: (1) chronic treatment of PNE 
significantly improved the obesity-induced pathological 
changes such as avoiding an excessive fat accumulation, 
decreasing blood lipid levels and resisting fatty liver but 
PNS at the same dosage showed moderate anti-obesity 
effects; (2) PNS and PNE inhibited obesity-related ER 
stress and the associated apoptosis and inflammation in 
eWAT.

In the past decades, the global epidemic of obesity 
has attracted more and more attention. Metabolic dis-
turbance is aggravated by overnutrition and/or modern 
sedentary lifestyle and other risk factors consist of envi-
ronment and genetics [24]. It is well known that obe-
sity causes many health problems, including high blood 
pressure, fatty liver, diabetes, and increasing the risk of 
cancers [25]. The most intuitive manifestations of obe-
sity are weight gain and massive accumulation of fat. 

Fig. 2  PNS and PNE improve lipid profile. The effects of PNS and PNE treatment (20 mg/kg/day, 4 weeks) on plasma levels of triglyceride (A), total 
cholesterol (B), LDL-C (C), HDL-C (D), ALT (E) and AST (F) in DIO mice. Values are the means ± SEM (n = 6); *p < 0.05, DIO vs. Control; #p < 0.05, PNS vs. 
DIO and PNE vs. DIO
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Expansion of eWAT quickly responds to obesity in body 
with increasing in adipocyte number and cell size [26]. 
A number of studies have investigated the effects of P. 
notoginseng or its component on adipocyte by in  vitro 
experiments. In 3T3-L1 cell, PNS and ginsenosides Rb1/
Rg1 were shown to inhibit adipogenesis and increase 
glucose uptake [21, 27, 28]. Therefore, the current study 
aimed at exploring the anti-obesity properties of PNS 
and PNE in  vivo. In previous study, PNS was found to 
reduce body weight and fat mass in DIO mice [29]. How-
ever, our current data showed that PNS could not avoid 
these adverse consequences of HFD. These contradic-
tions might be due to the different treatment conditions. 
In our present study, we treated the mice with a low dos-
age at 20 mg/kg/day and the HFD was the type with 45% 
fat; while PNS administered in that previous study was 
high dosage, 400 and 800 mg/kg/day, and HFD with 60% 
was used. Importantly, we provided the novel findings 
that the whole extract PNE was more potent than PNS 
at the same dosage to reduce the visceral white adipose 

tissues, eWAT and rWAT, as well as iWAT accompa-
nied by reversal of adipocyte hypertrophy. PNE signifi-
cantly decreased the fat accumulation (eWAT, rWAT and 
iWAT) but this did not contribute to significant loss of 
body weight. The lean mass may play a crucial role. There 
is a limitation of the current study that the overall lean 
mass and fat mass in the whole animal were not exam-
ined, which require further exploration. Brown adipose 
tissue is an energy-consuming and heat-producing adi-
pose tissue [30, 31]. PNS and PNE had no influence on 
food intake and energy consumption as well as the weight 
of iBAT.

Obesity detrimentally affects lipid metabolism includ-
ing triglyceride and cholesterol productions. When the 
storage capacity of adipose tissue reaches saturation, 
ectopic fat deposition and increased circulating free fatty 
acids (FFA) will occur due to the extravasation of excess 
fatty acids from adipocytes, resulting in lipotoxicity to 
various organs or tissues [32]. Non-alcoholic fatty liver 
disease can be found during the progression of obesity 

Fig. 3  PNS and PNE relieve fatty liver in obesity. Appearance of the liver (A). Hepatic levels of triglyceride (B) and total cholesterol (C). 
Representative images of H&E (D), oil-red O staining (E) and CD68 expression (G) of the liver histological sections. Relative area of oil-red O staining 
in liver (F). Values are the means ± SEM (n = 6); *p < 0.05, DIO vs. Control; #p < 0.05, PNS vs. DIO and PNE vs. DIO. Hepatocytes (arrow); Vacuolization of 
cytoplasm (*); central vein (cv)
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and typical features are increases in lipid content and 
liver damage. Herein, both PNS and PNE were able to 
ameliorate the lipid metabolism and fatty liver: (1) low-
ering the levels of triglyceride and cholesterol in plasma 
and liver tissues to different extents; (2) greatly inhibit-
ing hepatic fat accumulation; and (3) diminishing liver 
function-related indicators ALT and AST. These results 
are consistent with the recent study on PNS [33]. Ame-
lioration of fatty liver is beneficial to reduce the increase 
of FFA-induced acyl coenzymes A (CoA) [34], and ulti-
mately prevent the synthesis of endogenous cholesterol 
[35, 36].

Obesity will lead to cell hypoxia because of limited 
angiogenesis and excessive adipose tissue, and thereby 
trigger inflammation and apoptosis [10]. Proinflamma-
tory factors are released in hypertrophic adipose tissue, 
as for example, tumor necrosis factor-α (TNF-α), inter-
leukin-6 (IL-6) and monocyte chemoattractant pro-
tein-1 (MCP-1) [37]. Proinflammatory macrophages 
are recruited into fat depots by inflammatory factors to 
form crown-like structures, which are well recognized as 
the histologic hallmarks of inflammatory and dead adi-
pocytes [38]. The crown-like structures were present in 
eWAT from DIO mice but were absent in samples from 
PNS- and PNE-treated groups. This result implies that 

PNS and PNE reduced cellular inflammation and apop-
tosis in adipocyte hypertrophy, which were further veri-
fied by examining protein expressions of related signaling 
pathways.

In obesity, adipocyte hypertrophy and massive lipid 
accumulation are associated with ER stress. ER stress 
increases macrophage infiltration, triggering inflam-
mation and apoptosis in adipocytes [38, 39]. Upon ER 
stress, GRP78/BiP, an ER chaperone dissociates from 
the three ER stress sensors, PERK, IRE1 and ATF6 to 
activate the downstream signaling cascade. Both JNK 
and p38 MAPK are known to be downstream targets 
of IRE1 pathway; and activation of p38/JNK signaling 
pathway mediates not only apoptosis but also inflam-
mation. All the three pathways ultimately induce the 
activation of CHOP and caspase-3 to initiate apopto-
sis [40, 41]. As reported previously, HFD significantly 
increased the expressions of ER stress-responsive 
proteins such as CHOP and GRP78 in eWAT [13, 42]. 
There is also convincing evidence that adipose tis-
sue from DIO mice had enhanced phosphorylation of 
JNK [43]; and inhibition of JNK activity could reduce 
adipocyte apoptosis [44]. Moreover, CHOP is linked 
to inflammation. HFD-induced macrophage infiltra-
tion was improved in CHOP−/− mice [45]. Similarly, 

Fig. 4  PNS and PNE inhibit adipocyte hypertrophy. Representative images of H&E staining of the eWAT histological sections (A). Average size of 
adipose cells (B). The distribution trend of adipocyte size (C). Values are the means ± SEM (n = 6); *p < 0.05, DIO vs. Control; #p < 0.05, PNS vs. DIO and 
PNE vs. DIO. Crown-like structures (*)
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we found that expressions of GRP78, cleaved (active) 
ATF6, phosphorylated JNK at Thr183/Tyr185, phos-
phorylated p38 at Thr180/Tyr182, CHOP and cas-
pase-3 were upregulated in the eWAT from obese 
mice, revealing the occurrence of ER stress and the 
associated inflammation and apoptosis. These proteins 
in eWAT were effectively downregulated by PNS and 
PNE treatments. Ginsenoside Re exhibits anti-inflam-
matory role through inhibition of p38/JNK activation 
in 3T3-L1 cell, as well as relieving the insulin resist-
ance [46]. Ginsenoside Rg3 inhibits ER stress-mediated 
adipocyte death [47]. In other cell type like cardio-
myocytes, PNS [48] and notoginsenoside R1 [49] pro-
tect against ER stress-related signaling pathways. The 
anti-inflammatory potential of PNS has been widely 
demonstrated [50, 51], and notoginsenoside R1 can 
suppress p38/JNK pathway to protect PC12 cells from 
neurotoxicity [52]. In line with the previous studies, 
we provided the novel findings that not only PNS but 
also PNE can inhibit ER stress-mediated inflammation 

and apoptosis in adipocytes, exerting the anti-obesity 
effect.

Conclusions
Collectively, our results suggest that high-fat consump-
tion alters ER homeostasis in adipocyte and impairs lipid 
metabolism. Saponins are always recognized as the major 
bioactive ingredients of P. notoginseng. Interestingly, the 
whole ethanolic extract also exhibit anti-obesity effects 
and is more effective than PNS at certain circumstances. 
PNS and PNE reduce body fat mass and improve lipid 
distribution in obese mouse model, through regulating 
the interplay of ER stress, inflammation and apoptosis. 
The results support the therapeutic potentials of PNS 
and PNE against obesity and its associated metabolic 
abnormalities. The advantages of PNE over PNS on lipid 
metabolism may be attributed to other ingredients apart 
from saponins. Further investigation is needed to identify 
the mediator(s) contributing to the differential effects of 
PNS and PNE.

Fig. 5  PNS and PNE suppressed inflammation and apoptosis in adipose tissue. F4/80 staining (brown) in the crown-like structure was observed in 
eWAT of DIO mice under 200 × field (A). Adipose tissue apoptosis was determined by TUNEL staining (B) while DAPI labels the nucleus to determine 
the total number of cells in 400x field
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