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Abstract 

Background:  Recent years, a soaring number of marketed Trifolium pratense (red clover) extract products have 
denoted that a rising number of consumers are turning to natural alternatives to manage postmenopausal symp‑
toms. T. pratense ethanolic extract (TPEE) showed immense potential for their uses in the treatment of menopause 
complications including osteoporosis and hormone dependent diseases. Early diagnosis of osteoporosis can increase 
the chance of efficient treatment and reduce fracture risks. Currently, the most common diagnosis of osteoporosis is 
performed by using dual-energy x-ray absorptiometry (DXA). However, the major limitation of DXA is that it is inac‑
cessible and expensive in rural areas to be used for primary care inspection. Hence, serum biomarkers can serve as a 
meaningful and accessible data for osteoporosis diagnosis.

Methods:  The present study systematically elucidated the anti-osteoporosis and estrogenic activities of TPEE in 
ovariectomized (OVX) rats by evaluating the bone microstructure, uterus index, serum and bone biomarkers, and 
osteoblastic and osteoclastic gene expression. Leverage on a pool of serum biomarkers obtained from this study, 
recursive feature elimination with a cross-validation method (RFECV) was used to select useful biomarkers for osteo‑
porosis prediction. Then, using the key features extracted, we employed five classification algorithms: extreme gradi‑
ent boosting (XGBoost), random forest, support vector machine, artificial neural network, and decision tree to predict 
the bone quality in terms of T-score.

Results:  TPEE treatments down-regulated nuclear factor kappa-B ligand, alkaline phosphatase, and up-regulated 
estrogen receptor β gene expression. Additionally, reduced serum C-terminal telopeptides of type 1 collagen level 
and improvement in the estrogen dependent characteristics of the uterus on the lining of the lumen were observed 
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Background
The world population is ageing as a result of our pur-
suit of longevity. According to the report released by 
the United Nation in 2020, the number of populations 
that is aged 65 years or older is estimated to be 727 mil-
lion worldwide [1]. Women generally have life expec-
tancy longer than men and because of that, women have 
accounted for 55% of the global population aged over 
65 years old or more. Osteoporotic bone fracture is one 
of the major health consequences in elderly people [2]. 
The prevalence of osteoporosis increases in both gen-
ders with aging, but more significantly in women over 
50  years old [3]. At menopause, estrogen deficiency 
causes the expedition of bone resorption through several 
mechanism of actions. Conventional therapies for post-
menopausal osteoporosis such as antiresorptive drugs 
(estrogen, calcitonin, bisphosphonates) and callus forma-
tion drugs (parathyroid hormone) have low long-term 
compliance and side effects; over and above, the cost of 
treatment can be prohibitive [4, 5]. Consequently, scien-
tists have sought for alternative therapeutics including 
nutrients and botanicals.

Trifolium pratense L. (Fabaceae) (red clover), also 
known as hong che zhou cao or san ye cao, has long been 
used ethnopharmacologically to treat a variety of ill-
nesses, including asthma, whooping cough, and gout [6, 
7]. In recent years, it has been promoted and marketed 
as dietary supplements to help manage menopause 
symptoms, cholesterol levels, and osteoporosis. There 
are a total of 1545 commercial red clover products, 78 
of which are Canadian Licensed [8]. The soaring num-
ber of red clover extract products on the market denot-
ing an increasing number of consumers are seeking 
natural alternatives to treat postmenopausal symptoms. 
Scientific studies have been conducted to elucidate the 
effects of red clover extract and its active ingredients on 
vasomotor symptoms and bone quality [9, 10]. Its benign 
effects on the breast, endometrium, and neural structure 
have also been reported [11].

Previous in  vivo studies on the effects of red clover 
have almost exclusively focused on the macroscopic 
and mechanical properties of bones [12, 13], there have 
been relatively few studies on the molecular effects of red 

clover extract in bones. As a result, our study sought to 
systematically elucidate the anti-osteoporosis and estro-
genic properties of red clover extract on both the mac-
roscopic and molecular levels. Additionally, we sought 
to validate the HPLC method for determining the active 
ingredients in this extract in order to ensure the extract’s 
high quality, which is critical for its safety and efficacy.

The deterioration of bone quality occurs silently until 
a fracture occurs. Thus, early detection of osteoporo-
sis increases the likelihood of effective treatment and 
decreases the risk of fracture. Currently, the most fre-
quently used method for diagnosing osteoporosis is dual-
energy x-ray absorptiometry (DXA or DEXA). However, 
DXA’s primary limitation is that it is inaccessible and 
prohibitively expensive in rural and remote areas for pri-
mary care inspection. As a result, alternative techniques 
for early detection of this silent disease is necessary.

Advanced machine learning models (e.g., XGBoost) 
and feature selection techniques (e.g., Recursive Feature 
Elimination Cross Validation (RFECV)) in combination 
with biomarkers may provide a reliable and accessible 
alternative to DXA for osteoporosis diagnosis. These 
studies, however, are extremely limited. Several previous 
studies attempted to predict osteoporosis using machine 
learning, their studies employed aggregated data such as 
demographic data and medical records [14, 15]. TK Yoo, 
SK Kim, DW Kim, JY Choi, WH Lee, E Oh and E-C Park 
[15] predicted osteoporosis using demographic charac-
teristics (e.g., age, height, and BMI) and medical records 
(e.g., duration of menopause, history of fracture, and 
diabetes) from the Korea National Health and Nutrition 
Examination Surveys.

The current study hypothesizes that biomarkers could 
be used as input features for osteoporosis prediction. 
This is because biomarkers have demonstrated a high 
potential for being a useful, relatively inexpensive, and 
non-invasive tool for osteoporosis assessment [16]. These 
biomarkers provide functional information that aids in 
the early detection and treatment of major diseases such 
as osteoporosis [17]. The association between osteoporo-
sis and diseases like chronic kidney [18] and/or liver dis-
ease [19], diabetes [20–22], obesity [23, 24], and chronic 
obstructive pulmonary disease [25] has been raised in the 

in the TPEE intervention group. Among the tested classifiers, XGBoost stood out as the best performing classification 
model with the highest F1-score and lowest standard deviation.

Conclusions:  The present study demonstrates that TPEE treatment showed therapeutic benefits in the prevention 
of osteoporosis at the transcriptional level and maintained the estrogen dependent characteristics of the uterus. Our 
study revealed that, in the case of limited number of features, RFECV paired with XGBoost model could serve as a 
powerful tool to readily evaluate and diagnose postmenopausal osteoporosis.

Keywords:  Machine learning, Osteoporosis, Postmenopause, Red clover, Trifolium pretense, XGBoost
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previous reports. As a result, serum biomarkers associ-
ated with these diseases may be useful in diagnosing 
osteoporosis.

Methods
Preparation of ethanolic extract of Trifolium pratense 
flower
T. pratense ethanolic extraction and species identification 
were performed using the previously described method 
[26]. T. pratense was obtained from a certified company, 
Teazen Co. Ltd. (Anyang-si, Republic of Korea), and was 
cultured and originated from Albania (Certificate of Ori-
gin Number A19690728 was issued on 2019-02-11 by 
Industrie- und Handelskammer Würzburg-Schweinfurt, 
verification code: GSY4-3M2C-CP9C), with the voucher 
number P-338852. T. pratense was collected with the 
necessary institutional permissions.

This study is in accordance with local and national 
regulations. DaeHo Co. Ltd. (Gyeonggi-do, Republic of 
Korea) extracted the product in accordance with Good 
Manufacturing Practice (GMP) standards and the Food 
Item Manufacturing Report. Briefly, macerated T. prat-
ense leaves and flowers (30 kg) were mixed with extrac-
tion solvent (30% ethanol) in a 1:30 ratio. The sample was 
extracted twice for 3 h at 85 °C, and the extract from each 
extraction step was filtered through a 1-μm filtration. The 
resulting T. pratense ethanolic extract (TPEE) was then 
combined with dextrin in a 7:3 ratio (extract:dextrin) 
during a spray-drying step at 180 °C as a product proto-
type for animal testing.

Chemical characterization of T. pratense using UPLC‑ESI–
MS/MS analysis
UPLC was performed with a Waters Acquity UPLC 
system (Waters Corporation, Milford, USA). The sam-
ples were separated on a Waters BEH C18 column 
(2.1 × 150 mm, 1.7 µm) at room temperature. The mobile 
phase consisted of water (A) and acetonitrile (B), both 
acidified with 0.1% formic acid. The elution gradient 
was set as follows: 0–1 min, 5% B; 1–20 min, 5–70% B; 
20–24 min, 70–100% B; 24–27 min, 100% B; 27–27.1 min, 
100–5% B; 27.1–30 min, 5% B. The flow rate was 0.4 mL/
min and the sample loading volume was 1 µl. The UPLC 
was coupled to an LTQ-Orbitrap XL hybrid mass spec-
trometer (Thermo Electron, Bremen, Germany) via an 
ESI interface. The samples were analyzed in positive ion 
mode and the conditions of the ESI source were the same 
as previously used [27]. The representative chromato-
gram and spectra were shown in Additional file 1. HPLC 
quantification of the indicative compounds, biochanin A 
(BCA) and formononetin (FMT) in TPEE was carried out 
and reported in our previous study [28].

Validation of analytical method
The specificity of the method was ascertained by analyz-
ing the standard compounds and the extract. The peaks 
for BCA and FMT in the sample were confirmed by com-
paring the retention times of the sample peak with that 
of the standard. The peak purity of those compounds was 
assessed by comparing the spectra at two levels, viz; peak 
start and peak end positions.

The accuracy of an analytical method is the extent to 
which test results generated by the method and the true 
value of analytes. The precision of a method is the extent 
to which the individual test results of multiple injections 
of a series of standards agree. The known concentra-
tions of BCA and FMT (0.015625, 0.03125, 0.0625 and 
0.125 mg) were spiked into the extract and analyzed for 5 
times for the determination of accuracy and precision of 
the analytical method.

The lower limit of detection (LOD) is defined as the 
lowest concentration of analyte in a sample that can be 
detected, but not necessarily quantitated, under the 
stated experimental conditions. It can be calculated 
from the standard deviation of the response and the 
slope associated with the calibration curve according to 
the equation: LOD = (SD × 3.3)/slope. The lower limit of 
quantification (LOQ) is defined as the lowest concentra-
tion of analyte in a sample that can be quantifiable under 
the stated experimental conditions. It can be calculated 
from the standard deviation of the response and the slope 
associated with the calibration curve, according to the 
following equation: LOQ = (SD × 10)/slope.

The linearity of an analytical method is its ability to 
elicit test results that are directly proportional to the con-
centration of analytes in samples within a given range. 
Linearity is determined by a series of 3 injections of 5 
standards having 0.0078125–0.125  mg/mL of BCA and 
FMT. The linear regression analysis was carried out by 
plotting the peak areas (y-axis) of each compound against 
the respective concentrations (x-axis) of BCA and FMT. 
The linearity for the relationship between peak area and 
concentration was demonstrated by a correlation coeffi-
cient (r2) greater than 0.99.

Animal grouping and treatments
Healthy 8-week-old female Sprague–Dawley rats (body 
weight 190–230 g) were housed in an air-conditioned 
environment (22 ± 2  °C), with a 12-h light/dark cycle. 
The animals were given free access to Teklad-certi-
fied irradiated global 18% protein rodent diet (2918C, 
Envigo, USA), which was supplied by Koatech (Gyeo-
nggi-do, Republic of Korea), as well as distilled water. 
Animal handling followed ARRIVE guidelines and was 
conducted in accordance with the National Institutes 
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of Health’s Guide for the Care and Use of Laboratory 
Animals. The institutional animal care and use com-
mittee at Kyungpook National University, Republic of 
Korea, approved this study (approval number: KNU 
2018–121). The acclimatized rats were either Sham 
operated (n = 10) or ovariectomized bilaterally (OVX, 
n = 60). Normal group (n = 10) was solely used for 
machine learning analysis as positive control.

The OVX rats were divided into six groups at 
random, with each group consisting of 10 rats. 
The members of the group were given names 
based on the treatment they received: Nega-
tive control (NC) = OVX + 30% dextrin; Pome-
granate extract (PomE) = OVX + 500  mg/kg/day 
pomegranate extract; Estradiol (E) = OVX + 25  μg/
kg/day estradiol; T125 = OVX + 125  mg/kg/
day TPEE; T250 = OVX + 250  mg/kg/day TPEE; 
T500 = OVX + 500  mg/kg/day TPEE. The conversion 
of TPEE doses and its functional indicator components 
(FMT and BCA) in rats to human equivalent doses 
(HED) was illustrated in Additional file  2. One week 
after the surgery, the treatment began. The same vol-
ume of 30 percent dextrin was given to the sham and 
NC groups via oral gavage. In this study, three positive 
controls were used: Sham (representing endogenous 
estradiol in the body), E (administration of estradiol, 
a positive control drug used for hormone replacement 
therapy for the treatment of postmenopausal osteopo-
rosis [29]), and PomE (pomegranate extract as a plant 
extract positive control for osteoporosis intervention 
[30, 31]). PomE was purchased from Hanil PFC Co., 
Ltd. (Seoul, Republic of Korea), which is a recognized 
health functional food by the MFDS (Ministry of Food 
and Drug Safety). The PomE was previously character-
ized chemically using LC/MS/MS [32].

At the end of the treatment, the rats were anesthe-
tized with CO2 inhalation until unconscious and blood 
samples were taken via cardiac exsanguination and cen-
trifuged for 10  min at 1,000 × g to obtain serum and 
stored at − 80 °C until used.

Preparation of specimens
Femurs and uterus for histology examination were 
immediately fixed in 10% buffered formalin solution. 
Paraffin embedded blocks (5  μm) were stained with 
hematoxylin and eosin (H&E) for histology analysis 
under an optical microscope. While organs used for 
gene expression and biomarkers analysis were kept at 
-80  °C until the tests were performed on thawed sam-
ples. The cortical bone thickness was analyzed from 
histology images and measured using Digimizer (Med-
Calc Software Ltd, Belgium).

Bone mineral density (BMD) and Micro‑CT analysis
The BMD of right femur in each group (n = 6) were 
measured using micro-CT (Quantum FX micro-CT, 
Perkin Elmer, USA) using following settings: 90  kV, 
180 µA, 10 mm Field of View (FOV). The femur images 
were reconstructed using Analyze 12.0 software (Perki-
nElmer, USA). The bone radiomorphometric param-
eters including BMD (mg/cc), percentage of bone 
volume/total volume (BV/TV, %), trabecular thickness 
(Tb.Th, mm), trabecular spacing (Tb.Sp, mm), trabecu-
lar number (Tb.N, mm−1) were also determined.

Reverse transcription (RT)‑ polymerase chain reaction 
(PCR)
Femur was excised and cleaned of all muscles and con-
nective tissue was removed. The bone was frozen in liq-
uid nitrogen and crushed with pestle and mortar. Total 
RNA was isolated using guanidinium thiocyanate-
phenol–chloroform extraction (TRIzol). TRIzol was 
added to the bone sample and homogenizer was used in 
homogenization step. The RNA pellets were dissolved 
in DEPC water and quantified using a nanophotometer.

PCR amplification
For expression of the selected genes: receptor activator 
of nuclear factor-kappa B ligand (RANKL), osteopro-
tegerin (OPG), osteocalcin (OCN), collagen type 1 (α) 
(ColA) and alkaline phosphatase (ALP), estrogen recep-
tor (ER α and β), 10 pmol forward primers and reverse 
primers of each gene was prepared. GAPDH was used 
as housekeeping gene. Amplification was performed 
as follows: 40 cycles at 94 °C for 30 s, annealing at the 
60  °C for 30  s, and 72  °C for 30  s. The first cycle was 
conducted at 94 °C for 5 min and the final cycle at 72 °C 
for 7 min and then ended at 4 °C. The sequences of the 
primers for each target genes were shown in Additional 
file 3.

Biomarker analysis
The serum used for biomarker analysis was kept at 
-80 °C until the respective tests were performed. Serum 
biomarker concentrations were determined using an 
enzyme-linked immunosorbent assay (ELISA) kit (Cus-
abio Biotech, Wuhan, China). According to the manu-
facturer’s instructions, sample analysis and calibration 
curves were plotted. Serum biochemistry analysis was 
done by Medivalley Daegu-Gyeongbuk Medical Cluster.

Dataset description
A total of 16 biomarkers (8 primary biomarkers and 
8 secondary biomarkers) were included in this study 
as input features to predict bone quality of the test 



Page 5 of 17Quah et al. Chinese Medicine           (2022) 17:70 	

subjects. Primary biomarkers were the biomarkers that 
are normally known for having direct relationship with 
bone quality, or commonly known bone biomarkers 
supported by literatures. Secondary biomarkers were 
the biomarkers that have indirect impacts towards 
bone quality. The biomarkers included are listed in 
Additional file 4.

Models descriptions
The 5 models used in this study to map the relation-
ship between the 16 biomarkers and osteoporosis. The 
5 models are XGBoost, Random Forest (RF), Artificial 
Neural Network (ANN), Decision Tree (DT), and Sup-
port-Vector Machine (SVM). These 5 models are exam-
ined because they are accessible and are commonly used 
in various studies related to osteoporosis [33–35] or bio-
markers [36, 37].

DT, RF, and XGBoost are tree-based algorithms with 
DT being the base unit. DT is an algorithm that splits 
observations into subsets to optimizes the classification 
loss function, in this case, it is the Gini Index Function 
given by:

where pk is proportion of instances of class k in a particu-
lar node.

(1)Loss =

∑

{pk ∗ (1− pk)}

The DT is commonly used for its interpretability. A 
possible example of the optimized DT specifically could 
be visualized in Fig. 1.

RF is a decision-tree-based ensemble machine learn-
ing algorithm where a number of decision trees are each 
fitted to different subsamples. The subsamples are drawn 
via bootstrapping. The final prediction of a RF is the aver-
age prediction of the fitted decision trees. These features 
reduce tendency for overfitting the data and improve 
overall prediction performance. Similar to RF, XGBoost 
is also a decision-tree-based ensemble machine learn-
ing algorithm but is optimized via gradient descend (also 
known as Gradient Boosting). Gradient Boosting opti-
mizes the model by minimizing the loss function such as 
the binary cross-entropy (CE) loss function:

ANN is a series of nodes comprises a linear regression 
and an activation function to introduce non-linearity 
(Fig. 2). The ANN is also optimized via gradient descend 
on the loss function such as the CE loss defined in Eq. (2).

SVM is a machine learning model that defines a deci-
sion boundary for classification. The decision boundary 

(2)

CE Loss =
−1

N

N
∑

i=1

yi ∗ log
(

p
(

yi
))

+
(

1− yi
)

∗ log(1− p
(

yi
)

)

Fig. 1  A typical optimized classification decision tree to map the relationship between serum biomarkers and osteoporosis
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can become non-linear by adding the kernel function 
such as the radial basis function kernel defined below:

where x and x’ are 2 samples, α is an arbitrary parameter, 
and ||x − x

′

| |
2 is the Euclidean distance between x and x’.

Feature selection with recursive feature elimination 
with cross validation (RFECV)
Firstly, the input features are normalized via Standard 
Scaler:

Next, the input features undergone feature selection 
and are ranked based on their importance defined by a 
widely adopted technique known as Recursive Feature 
Elimination with Cross Validation (RFECV) as large 
number of input features does not always contribute to 
better prediction performance. RFECV is used in this 
study because RFECV has shown to evaluate a model’s 
generalization ability with small datasets well. Further-
more, RFECV is widely adopted for similar tasks in 

(3)K
(

x, x
′
)

= exp

(

−
||x − x

′

| |
2

2α2

)

(4)Xnorm =
x − x

σ

biomedical fields such as gene selection and cancer diag-
nosis [38, 39].

The parameters used for RFECV are as below:

•	 Number of input variables per feature set = 10
•	 Classifier Model = Random Forest
•	 K-hold subsets = 5
•	 Scoring Metrics = F1-Score

The F1-score is the geometric mean of recall and preci-
sion as is defined as Eq. (5). F1-score was used instead of 
accuracy due to dataset imbalance explained in the ‘Pre-
diction tools and model performance metrics’ section.

The feature selection process was repeated 50 times 
to obtain stable result due to the stochastic nature of 
RFECV. Each biomarker was scored, ranked, and aggre-
gated via median over the 50 iterations. F1-score is used 
as the scoring metrics due to imbalance sample distri-
bution where large majority of samples have osteoporo-
sis. Biomarkers that are deemed relevant in predicting 
osteoporosis in the test subjects will received rank of 
1, whereas biomarkers that are not deemed relevant in 

(5)F1 =
2

1
recall

+
1

precision.

Fig. 2  A typical illustration of a neural network to map the relationship between serum biomarkers and osteoporosis
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predicting osteoporosis in the test subjects will receive 
rank of 2 onwards, representing the relevancy in 
descending order.

Prediction tools and model performance metrics
The selected biomarkers (biomarkers with rank 1) were 
then served as input variables to the machine learn-
ing models. The machine learning models were trained 
to learn the association between the selected biomark-
ers and the severity of osteoporosis. According to the 
National Osteoporosis Foundation, the severity of oste-
oporosis is measured by T-score of Bone Mass Density 
(BMD) and is classified as shown in Additional file 5. 

Therefore, the models will be trained to classify the 
osteoporosis severity of the test subjects. Since there are 
no defined standard of osteoporosis severity for non-
human test subjects, the mean and standard deviation 
used for the T-Score will be derived from test subjects 
from the positive control (Sham and normal groups) in 
this study.

After eliminating the samples that contained missing 
data, 73 samples were used in this study and the distribu-
tion of samples over the 3 severity groups were shown in 
Additional file 6.

Due to the limitation in number of samples from 
the osteopenia severity group, the osteopenia severity 
group was re-labelled as ‘No Osteoporosis’. Hence, only 
2 classes remained instead of 3. Five different machine 
learning models were considered, and their respective 
performances are compared. The 5 machine learning 
models include XGBoost, RF, SVM, ANN, and DT.

The models were trained on 58 samples (80% training 
set) and evaluated on the other 15 unobserved samples 
(20% test set). The performance of the model was evalu-
ated based on the classification F1-score on the test set. 
F1-score was selected due to imbalance sample distri-
bution where large majority of test subjects have osteo-
porosis. Similar to the feature selection process, the 
assessment of the machine learning models was also 
evaluated 50 times to obtain stable results. The training 
samples and test samples were shuffled in every iteration 
and the results (F1-score) were aggregated via mean and 
standard deviation. Additional file  7 shows the general 
modelling framework for the prediction model.

Statistical analysis
The data were expressed as mean ± standard devia-
tion (SD), and the statistical significance (p < 0.05) was 

where T-Score =
BMD− Average BMD among Healthy Young Adults

Standard Deviation BMD among Young Adults

determined by two-way analysis of variance (ANOVA) 
with Tukey’s post-hoc analysis (GraphPad Prism 5.01, La 
Jolla, CA, USA).

Results
Chemical characterization of TPEE and validation 
of analytical method
Identification of chemical constituents in TPEE using 
UPLC‑ESI–MS/MS analysis
Constituents in TPEE identified are daidzein (DZN), 
genistein (GNT), formononetin (FMT), and biochanin 
A (BCA) with different retention time, 8.61, 10.22, 11.91, 

and 14.00  min (Additional file  1). The mass spectra for 
each compound were also shown.

Specificity
Specificity of the analytical method ensures that the sig-
nals measured come from the indicative compounds 
(BCA and FMT) in TPEE and there is no interference 
from diluents, extract materials and mobile phase. Photo-
diode array detection also supported the specificity of the 
method and provided evidence for the homogeneity of 
the peaks of analytes (Additional file 8). Peaks obtained 
from recovery experiments were checked for uniformity 
using UV spectra taken from different points of the peak 
of interest. These spectra were superimposed whenever 
overlaid; showing that there were no other co-eluting 
peaks, in every instance for each of the analytes. The data 
obtained in the validation study proved that the proposed 
method is validated and can be utilize for the determina-
tion and quantification of BCA and FMT.

Accuracy and precision
The accuracy, intra-day precision (repeatability), and 
inter-laboratory precision (reproducibility) of this 
assay method were shown. The accuracy of the analysis 
method was measured as the recovery of analytes (Addi-
tional file 9). The recovery range for BCA and FMT were 
84.58–91.27% and 99.63–106.36%, respectively, which fell 
in the acceptable range of 80–120%. The precision was 
measured in terms of repeatability and reproducibility 
(Additional file  9) of this assay method was within the 
limit for all tested concentration according to the guide-
lines for analytical method development and validation 
[40, 41]. The percent relative standard deviation (%RSD) 
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is within the limits (%RSD < 2%), which indicate that, the 
assay method is validated depending on the precision.

LOD and LOQ
The method sensitivity has been checked practi-
cally where experimental LODs were 0.00639  mg/mL 
and 0.00519  mg/mL for BCA and FMT, respectively. 
The LOQ of BCA was 0.01936  mg/mL, and FMT was 
0.01573 mg/mL (Additional file 10).

Linearity
The analytical calibration curves were constructed for 
BCA and FMT. The linear regression equation for BCA 
is y = 7265.0x + 109.44. The linear regression equation for 
FMT is y = 5002.2x + 58.611. The correlation coefficients 
(r2) of BCA and FMT were 0.9999 (Additional file 11).

Effects of TPEE on the uterus of OVX rats
The uterus of the Sham rats is larger and thicker than 
that of the OVX rats. The uterus index was calculated 
as: Uterus index =

Uterus (g)
Body weight (kg) . As illustrated in 

Fig.  3, the Sham group’s uterus index was approxi-
mately 7.3-fold that of the other treated OVX groups. 
TPEE shows no significant effect on the uterus index 
compared to NC. Sham’s uterine glands have been 
found to be slightly elongated. Notably, the uterine 
lumen of the Sham group was lined by a stratified 
columnar epithelium with ciliated cells interspersed 

(Fig. 3). On the other hand, the NC group lacked cili-
ated cells on the lumen lining of the uterus, resulting 
in a smooth surface of the lumen. In contrast to NC, 
ciliated cells were observed in the uterine lumen lining 
of the T500 group, which is similar to the Sham group, 
as evidenced by a rough surface on the lumen 
epithelium.

Effects of TPEE on trabecular and cortical bone thickness 
in the femur of OVX rats
Figure 4C shows representative micro-CT 3D reconstruc-
tion images of the femurs. Table 1 summarizes the values 
of BMD (mg/cc), BV/TV (%), Tb.Th (mm), Tb.Sp (mm), 
and Tb.N (mm−1) for all the groups. NC group had a sig-
nificant decrease in BMD (366.33 ± 32.07 mg/cc), BV/TV 
percentage (1.58 ± 0.45%), Tb.Sp (0.09 ± 0.01  mm), and 
Tb.N (1.58 ± 0.06 mm−1). The groups treated with TPEE 
did not show significant improvement in the micro-
structure parameters. In all groups, there was no signifi-
cant change in BV/TV, Tb.Sp, or Tb.N in the femurs. As 
shown in Fig.  4C, the OVX groups experienced a sig-
nificant loss of trabecular bone volume (NC, PomE and 
all the TPEE groups), while estradiol administration (E 
group) restored the trabecular bone volume. However, 
statistical analysis revealed that the E group’s BV/TV 
was not statistically different from that of the NC group 
(Table 1).

Fig. 3  The effects of TPEE (T125, T250 and T500) or positive controls (Sham, PomE and E) on uterus index in OVX rats. Data were presented as 
mean ± SD, n = 6. ***p < 0.001 compared with NC group determined by two-way ANOVA test. Representative images of H&E staining of the rats’ 
uterus. The arrows indicated the ciliated cells on the linings of the epithelium cells. All pictures are stained with H&E and examined under × 400 
magnification. Scale bar, 50 µm
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In comparison to NC, the TPEE-treated groups had a 
thicker cortical bone structure, but lacked dose-depend-
ent effect (Fig.  4A). The bone trabeculae structure 

exhibited distinct disorder, loosening, and breakage 
in the NC group, while Sham group exhibited compact 
trabeculae structure. T250 and T500 groups showed 

Fig. 4  The effects of TPEE on cortical and trabecular bones. A The cortical bone thickness and the representative images of H&E staining of rats’ 
femur. All pictures are stained with H&E and examined under × 2.2 magnification. Scale bar, 500 µm. Data were presented as mean ± SD, n = 6. 
*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001 determined by two-way ANOVA test. B Trabecular bone tissue was stained with H&E and examined 
under × 400 magnification. Scale bar, 200 µm. C The representative images of the 3D architecture of trabecular bone analyzed by microCT analysis

Table 1  Effect of red clover extract on the microstructure and BMD of the OVX rats

Results are presented as mean ± S.D
a Indicate that the mean differs significantly from NC group based on one-way ANOVA, followed by Tukey’s post hoc test

Parameters NC Sham E PomE T125 T250 T500

BMD (mg/cc) 366.33 ± 32.07 723.45 ± 53.81 a 433.33 ± 31.81 a 398.71 ± 17.35 404.95 ± 20.44 405.64 ± 2.34 406.59 ± 9.51

BV/TV (%) 1.58 ± 0.45 13.11 ± 2.24 a 2.51 ± 0.82 1.51 ± 0.66 2.78 ± 0.51 2.75 ± 0.84 1.98 ± 0.42

Tb.Th. (mm) 0.50 ± 0.03 0.47 ± 0.03 0.57 ± 0.03 a 0.53 ± 0.03 0.54 ± 0.05 0.59 ± 0.02 a 0.54 ± 0.04

Tb.Sp (mm) 0.09 ± 0.01 0.11 ± 0.01 a 0.08 ± 0.02 0.10 ± 0.01 0.08 ± 0.01 0.10 ± 0.02 0.09 ± 0.02

Tb.N (mm−1) 1.58 ± 0.06 1.81 ± 0.08 a 1.62 ± 0.10 1.61 ± 0.10 1.48 ± 0.02 1.51 ± 0.03 1.63 ± 0.09
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increased trabecular space which is similar to that of NC 
(Fig. 4B). Increases in the marrow cavities were observed 
in the NC and T125 groups.

Regulatory effects of TPEE on RANKL and ER β gene 
expression in the bone
At the transcriptional level, the expression of RANKL 
was down-regulated by TPEE treatment (Fig. 5A). How-
ever, TPEE treatment did not show significant effects 
on other osteoblastic genes such as OPG, OCN, ALP 
and ColA. TPEE up-regulated ER β gene expression in 
the tibia but not ERα gene (data not shown) for T250 
and T500 groups. The levels of ER protein in the tibia of 
OVX rats were determined by ELISA, demonstrating that 
TPEE increased ER protein expression in the tibia (Addi-
tional file 12).

Effects of TPEE on bone and serum biomarker levels
The levels of tibial ALP, OCN, and ColA proteins in the 
TPEE-treated groups did not differ significantly from 
the NC group (Fig.  5B). Among the groups, the T500 
group showed the greatest improvement in phospho-
rus content. In this study, serum creatinine (CRE) and 
blood urea nitrogen (BUN) levels showed no significant 
increase in the treated groups when compared to the 
NC and Sham groups (Additional file  13). TPEE treat-
ment reduced serum C-telopeptide of type I collagen 
(CTX-1) levels in OVX rats in a dose-dependent manner 

(T125 = 116.7 ± 27.8  pg/mL, T250 = 92.3 ± 11.7  pg/mL, 
T500 = 69.6 ± 6.4 pg/mL) (Fig. 5C). The serum OCN lev-
els in the treated groups were not statistically different 
from those in the NC and Sham groups. The serum level 
of estradiol was significantly higher in all treated groups 
than in the NC group, but did not differ significantly 
from the Sham and E groups.

Recursive Feature Elimination with a Cross‑Validation 
(RFECV) ranking for each serum biomarkers
After normalization, the input features undergone fea-
ture selection process via RFECV. The selection process 
is repeated 50 times to ensure stability in results. Accord-
ing to the RFECV ranking, all biomarkers received a 
median ranking of 1 except TBIL (Fig. 6A). Although the 
ranks for CRE, TBIL, and ALP fluctuated throughout the 
50 repeated iterations of the feature selection process, 
the median aggregate ranks for both CRE and ALP were 
1. Therefore, only TBIL was eliminated from the input 
features.

Evaluation of machine learning models’ prediction 
performance
Five machine learning models were trained on the 
selected input features to predict the osteoporosis sever-
ity group of the test subjects. Each model was trained and 
evaluated 50 times to ensure reliable results. The perfor-
mance of the models over the 50 iterations in descending 

Fig. 5  Real-time PCR analysis for mRNA expression of RANKL, OPG, OCN, ALP, ColA, and ERβ in the tibia (A). The levels of osteoblastic and 
osteoclastic biomarkers in OVX rats’ tibia (B) and serum (C). Data are expressed as mean ± SD (n = 6). Data were presented as mean ± SD, n = 6. 
*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001 determined by two-way ANOVA test, followed by Tukey’s post hoc test
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order are shown in Table  2. The results from Table  2 
shows that the selected biomarkers showed generally 
satisfactory performance in predicting the osteoporosis 
severity of the test subjects.

Figure 6B and 6C show that XGBoost stood out as the 
best performing classification model based on the per-
formance metrics. It has the highest average F1-score 
and average accuracy while retaining minimal standard 
deviation of F1-score and standard deviation of accuracy 
over the 50 iterations compared to the other 4 models. 
The performance of RF model was very close to that of 
XGBoost but having slightly lower average F1-score and 
accuracy and higher standard deviation of F1-score and 
accuracy. SVM, ANN, and DT fell behind in both average 
and standard deviation of F1-score and accuracy over the 
50 iterations. Table  3 represents statistical significance 
(p-value) of the difference of performance (accuracy 
and F1-score) between XGBoost and the other mod-
els. Each model is trained and tested 50 times to obtain 
50 accuracy score and 50 F1-score. Firstly, t-test is con-
ducted between 2 models’ 50 accuracy scores to obtain 
the respective p-value. Then, t-test is conducted again 
between 2 models’ 50 F1-score to obtain the respective 
p-value. It is evident that XGBoost is the best performing 

model. In addition, difference in performance between 
XGBoost and other models is statistically significant, 
with RF being the exception (Fig. 7).

Discussion
BCA and FMT are the potential active ingredients in 
TPEE and they were commonly known as the indica-
tive compounds in red clover extract [28, 42, 43], there-
fore BCA and FMT in the sample were confirmed using 
HPLC analytical method. In this study, TPEE was pre-
pared in accordance with GMP standards and the Food 
Item Manufacturing Report in this study. Analytical vali-
dation has fundamental importance in the scope of GMP 
for herbal products, therefore validation of HPLC ana-
lytical method was performed. Validation is the process 
of confirming that a method satisfies the requirements 
for a particular use or application by providing objec-
tive evidence. Accurate validation of analytical methods 
is required to ensure the high quality of products, which 
has a direct impact on their safety.

TPEE treatment improved estrogen-dependent uterine 
characteristics such as ciliated cells on the lumen lining. 
Our results indicated that, despite the fact that estradiol 
was administered to OVX rats (E group), its effect was 

Fig. 6  Recursive Feature Elimination with a Cross-Validation (RFECV) ranking for each serum biomarkers based on F1-score (A). Boxplot of each 
model performance B F1-score and C accuracy over 50 iterations
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not comparable to that of the Sham group or significantly 
different from that of the other treated OVX groups. This 
result further demonstrated that endogenous estrogen 
was more effective than exogenous estrogen at maintain-
ing uterine size in OVX rats and postmenopausal women. 
TPEE did not have a significant effect on the uterus index 
in OVX rats at the tested concentration.

Trabecular microstructure and BV/TV critical indica-
tors of bone fracture and strength [44]. It should come 
as no surprise that the Sham group had the highest BV/
TV ratio in our study. In comparison to the Sham group, 
the OVX groups demonstrated a significant decrease 
in BMD, BV/TV, Tb.Th, Tb.Sp, and Tb.N. Our findings 
indicated that orally administered estradiol and phytoes-
trogens had no effect on the bone microstructure over 
the course of treatment. According to Yen, Qi [45], who 
conducted a comparison of the therapeutic efficacy of 
estrogen and parathyroid hormone (PTH), PTH outper-
formed estrogen as a potent stimulator of bone forma-
tion and has the ability to restore lost cancellous bone in 
osteopenic OVX rats. TPEE treatment had no effect on 
femoral BMD or other microstructure parameters in the 
OVX rats. This lack of significant change in femoral BMD 
is consistent with a previous study in which menopausal 

Fig. 7  A schematic of the XGBoost model evaluation workflow. The shaded area indicates the data pre-processing (including normalization and 
feature selection) and data partitioning. The boxes within the dashed lines represents training and testing procedures where Fi(X) denoting the tree 
function, where i denoting the ith tree

Table 2  Prediction performance (F1-score and accuracy) of the 
different machine learning models over 50 iterations

Models F1-Score Accuracy

Average Standard 
Deviation

Average Standard 
Deviation

XGBoost 90.54% 7.21% 86.00% 8.67%

Random Forest 89.15% 7.80% 83.00% 10.76%

Support Vector Machine 85.20% 7.41% 77.47% 12.07%

Artificial Neural Network 83.39% 9.47% 78.13% 10.75%

Decision Tree 83.35% 9.29% 78.40% 10.55%

Table 3  Statistical significance (p-value) of the difference of 
performance (accuracy and F1-score) obtained from the t-test 
conducted between XGBoost and other models

Models P-value

F1-Score Accuracy

XGBoost <  > SVM  < 0.01 0.011

XGBoost <  > DT 0.016 0.065

XGBoost <  > ANN  < 0.01  < 0.01

XGBoost <  > RF 0.56 0.43
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women were treated for 12 weeks with red clover extract 
[46].

Histology analysis of trabecular bone demonstrated 
that bone marrow cellularity increased dose depend-
ently in OVX rats treated by TPEE. NC group displayed 
reduction in bone marrow cellularity compared to Sham 
group. Notably, the reduction of bone marrow cellular-
ity was found with a corresponding increase in bone 
marrow adiposity [47]. The increase of adipocyte dis-
rupts the micro-environmental equilibrium essential to 
maintain osteogenesis [48]. According to Verma and col-
leagues [47], increased adipose tissue is associated with 
decreased bone formation due to a shift in stromal cell 
differentiation from osteoblastic to adipocytotic path-
ways. TPEE treatment may inhibit stromal cell differen-
tiation into adipocytic cells. Thus, TPEE-treated OVX 
rats had significantly lower serum TG levels as reported 
in our previous study [26].

RANK is a receptor located on surface osteoclasts, 
both precursor and mature. RANKL and OPG are the 
ligands that binds to the RANK receptor, these ligands 
are synthesized and secreted primarily by osteoblasts and 
bone marrow stromal cells [49]. When RANK is activated 
by the RANKL, osteoclast differentiation is initiated, and 
bone resorption is increased. OPG, a decoy receptor for 
RANKL, blocks RANKL-RANK interaction and inhib-
its the activation of osteoclasts. The RANKL expression 
was outstandingly high in NC group, which may have 
resulted in increased bone resorption. The micro-CT 
results on the bone microstructure in the NC group cor-
roborated this conclusion (Table 1). RANKL expression, 
on the other hand, was found to be significantly lower in 
the Sham, E, and TPEE-treated groups compared to the 
NC group. A dose-dependent upregulation in OPG gene 
expression was observed in TPEE-treated groups. This 
may be attributed to the bone remodeling mechanism in 
which osteoblasts express RANKL and OPG to regulate 
osteoclast differentiation. The ratio of OPG to RANKL 
in bone is a critical factor in regulating bone metabolism. 
Micro-CT results revealed that the Sham group has the 
highest BMD and BV/TV percent values, while all the 
treated groups did not differ significantly from the NC 
group (Table 1). In short, TPEE treatment showed inhibi-
tory effect on bone resorption at the transcriptional level 
but not at the macroscopic level over the course of this 
treatment.

OCN is a small non-collagenous matrix protein 
found in bone that is produced during new cell synthe-
sis and serves as a specific marker for bone formation 
and turnover [50]. Estrogen deficiency has been shown 
to increase serum OCN, CTX-1, and ALP levels, indi-
cating increased bone turnover [51]. Interestingly, we 
discovered that T500 showed decreased serum OCN 

and CTX-1 levels with a significantly high phospho-
rus content in the serum among the groups. In osteo-
porotic women, calcium and phosphorus deficiencies 
reduce the formation of hydroxyapatite crystals, allow-
ing free osteocalcin to circulate in the bloodstream. The 
increased phosphorus level in the T500 group may have 
contributed to the decrease in serum OCN levels. This 
suggests that treating the OVX rats with TPEE at a dose 
of 500 mg/kg could promote bone mineralization.

The OCN protein was derived from osteoblast cells 
and when combined with type 1 collagen forms an 
unmineralized flexible osteoid on which the osteoblasts 
reside. Type 1 collagen, which is also synthesized by 
osteoblasts, accounts for more than 90% of the pro-
tein in the bone matrix [52]. ColA gene encodes the α1 
chain of type I collagen which is the major extracellu-
lar matrix component of bone [53]. The TPEE-treated 
groups produced significantly more ColA protein in 
bone than the Sham group, but no significant increase 
in tibial OCN protein. This finding suggests that OCN 
protein may be a limiting factor for successful bone 
mineralization. This is because type 1 collagen and 
OCN contributed to the mineralization of the bone 
matrix, but our results showed that the treated groups 
showed only a slight increase in BMD when compared 
to the NC group. According to another study, as BMD 
decreases, OCN activity and synthesis increase [10]. 
In general, the BMD of the TPEE-treated groups was 
1.78-fold lower than that of the Sham group, but there 
were no significant differences in serum OCN levels, as 
determined by micro-CT analysis. Our study found no 
correlation between serum OCN levels and BMD.

When bone ER levels in tibia tissue homogenates 
were determined, it was discovered that the T250 and 
T500 groups had significantly higher levels than the NC 
group. The bone ER concentration in this case reflected 
the presence of all ERs (ERα and -β). A previous report 
indicated that the ER found in osteoclasts induces oste-
oclast apoptosis, resulting in decreased bone resorption 
[52]. The increased bone ER level in our study allowed 
us to infer that TPEE treatment increased the level of 
bone ER, which may contribute to the induction of 
osteoclast cell death. In the absence of endogenous 
estrogen, ER gene expression was significantly reduced 
in the NC group, but it was significantly upregulated 
in the T250 and T500 groups. ER levels in osteoblasts 
and mesenchymal cells decrease in women over the 
age of 40 [54]. Mesenchymal cells play critical roles in 
bone regeneration, particularly in bone differentiation 
and formation [55]. This corroborates the slower bone 
repairing processes in the older individuals. In OVX 
rats, TPEE maintains high levels of ER in the bone, pos-
sibly enhancing bone formation.
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One of the etiologic factors for osteoporosis include 
kidney dysfunction, as recorded in the present study by 
the increased serum level of urea and CRE and decreased 
serum protein level, with increased urinary calcium loss, 
indicating defective calcium absorption mechanisms 
[56]. The levels of serum ALP, CRE and BUN obtained in 
this study showed no significant increment in the treated 
groups compared to the NC and Sham operated group. 
Biomarkers have demonstrated a high potential for being 
a useful, relatively inexpensive, and non-invasive tool for 
assessing osteoporosis. However, analyzing serum bio-
markers in isolation may make it difficult to determine 
whether a subject is at risk of osteoporosis. A combina-
tion of serum biomarkers could be used as input features 
for osteoporosis prediction.

Although the ranks for CRE, TBIL, and ALP fluctu-
ated throughout the course of the 50 iterations of the 
feature selection process, the median aggregate ranks 
for CRE and ALP were both 1. Therefore, only TBIL was 
eliminated from the input features. There has been no 
consensus regarding the relationship between TBIL and 
osteoporosis in previous studies. YJ Lee, JY Hong, SC 
Kim, JK Joo, YJ Na and KS Lee [57] reported a positive 
correlation of TBIL with femur BMD in postmenopausal 
Korean women. However, another study on postmeno-
pausal Korean women without potential liver disease 
reported an independent and inverse association between 
TBIL and the prevalence of osteoporosis but a positive 
correlation of TBIL with BMD was observed [58]. Due to 
the fact that RFECV scored and ranked features by iterat-
ing through different combinations of features for a given 
total number of features, the fluctuation in the ranking of 
TBIL may imply that the association between TBIL and 
osteoporosis is not direct, and that other biomarkers may 
have acted as a mediator or moderator between TBIL and 
osteoporosis. To better understand this, future research 
may focus on the interactions and relationships between 
the biomarkers associated with osteoporosis severity.

The results in Table  2 indicate that the selected bio-
markers performed reasonably well in predicting the 
severity of osteoporosis in the test subjects. This finding 
is significant because it demonstrates that using the bio-
markers yielded from RFECV not only ensure the qual-
ity of the subsequent machine learning performance, 
but this method can also be applied in combination with 
BMD measurement by DXA to improve the accuracy of 
early osteoporosis assessment in the high-risk group. A 
higher average F1-score and a higher average accuracy 
over 50 iterations indicated that the model could predict 
more accurately, whereas lower standard deviation of 
F1-score and lower standard deviation of accuracy over 
the 50 iterations indicated that the model’s prediction 
was more stable.

The standard deviation illustrated in Fig. 6 corresponds 
to the difference in performances of a model over 50 
iterations of training and testing due to the non-deter-
ministic nature of the 5 machine learning models used. 
In other words, different results may be obtained even if 
given the same model and the same dataset. The model’s 
non-deterministic nature is caused by the random ini-
tialization of the model’s parameters, where the initial 
parameter values will affect the final optimized param-
eter values. Therefore, 50 training–testing iterations were 
carried out for each of the 5 machine learning models to 
avoid biases derived from the non-deterministic nature 
of the models.

There are 3 reasons why the standard deviation illus-
trated in Fig.  6 is acceptable. Firstly, the perceived high 
standard deviation can be mitigated by ensemble learn-
ing such as aggregating (e.g., averaging) the 50 results 
obtained. For instance, a sample will be labelled as osteo-
porosis if 35 out of the 50 models predicts osteoporosis. 
Secondly, the common practice is only to use the best 
model for prediction. However, we insisted on present-
ing the standard deviation (difference in performance of 
the same model) over 50 repetitions because the results 
obtained can be bias if the model is only trained and 
tested once. This bias is caused by the non-determinis-
tic nature of the 5 machine learning models used in this 
study. In other words, different results will be yielded 
even when the exact same data is used to train an exact 
same model. The inconsistent results over each repeti-
tion are caused by the random initialization of the mod-
el’s parameters before training and the initial values of a 
model’s parameters affects their final optimized values. 
Thirdly, a t-test results was presented (Table 3) to show 
that the outperformance of the XGBoost over other mod-
els is statistically significant despite the perceived high 
standard deviation. Hence, the perceived higher standard 
deviation is acceptable.

XGBoost was the best performing classification model 
based on performance metrics. In comparison to the 
other four models, it has the highest average F1-score 
and average accuracy while maintaining the lowest stand-
ard deviation of F1-score and standard deviation of accu-
racy over the 50 iterations. This is consistent with several 
other previous studies involving XGBoost [36, 59–61].

Conclusions
In short, TPEE down-regulated the expression of 
RANKL, a gene involved in the initiation of osteoclast 
differentiation and bone resorption, and upregulated 
ERβ gene expression. Our findings indicated that TPEE 
inhibited bone resorption via inhibiting the RANKL 
pathway in OVX rats at the transcriptional level but 
not at the macroscopic level throughout the course of 
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treatment in this study. Additionally, TPEE maintained 
the estrogen dependent characteristics of the uterus in 
OVX rats. Furthermore, our findings showed that TBIL 
was not an important feature for predicting bone qual-
ity as assessed by RFECV among the serum biomark-
ers tested. On top of that, RFECV combined with the 
XGBoost model was able to achieve the highest predic-
tion accuracy among the other classification models, 
despite having a limited number of features. This com-
bination of tools has the potential to be a powerful tool 
for rapidly assessing and diagnosing postmenopausal 
osteoporosis.
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cant difference compared with Sham operated group (Sham).
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