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Persimmon leaf extract alleviates chronic 
social defeat stress‑induced depressive‑like 
behaviors by preventing dendritic spine loss 
via inhibition of serotonin reuptake in mice
Hui Yu1†, Shumin Shao2†, Junnan Xu3†, Haibiao Guo4, Zhangfeng Zhong2* and Jiangping Xu1* 

Abstract 

Background:  Fresh or dried Persimmon leaves (Diospyros kaki Thunb.) exhibit preventive effects on cardiovascular 
and cerebrovascular diseases. However, their antidepressant effects and underlying mechanisms are unclear. Thus, we 
investigated mechanisms responsible for Persimmon leaf extract (PLE) activity on chronic social defeat stress (CSDS)-
induced depressive-like behaviors in mice.

Methods:  CSDS was used as a mouse model of depression. We performed the sucrose preference test (SPT), forced 
swim test (FST), and tail suspension test (TST) to identify depressive-like behavior. Spine density and dendritic mor-
phology were assessed using Golgi staining. Neurochemicals were quantified by microdialysis, doublecortin by immu-
nofluorescence, and cAMP using an ELISA kit. Finally, the levels of cortical proteins of phosphorylated cAMP-response 
element binding protein (CREB), brain-derived neurotrophic factor (BDNF), postsynaptic density synapsin-1 and 
protein 95 (PSD95) were quantified by western blot. 16S rRNA gene sequencing was used to detect fecal microbiota.

Results:  Treatment of CSDS-subjected mice with PLE (30.0–60.0 mg/kg, i.g.) enhanced sucrose preference, decreased 
immobility times in the TST and FST but did not affect locomotor activity. Furthermore, persistent social defeat stress 
decreased dendritic spine density and dendritic length in the brain, as well as decreased PSD95 and synapsin-1 
expression. PLE, interestingly, inhibited dendritic spine loss and increased synaptic protein levels. PLE also increased 
brain levels of 5-HT, cAMP, phosphorylated (p)-CREB, BDNF, PSD95, and synapsin-1 in mice subjected to CSDS. Further-
more, PLE increased their doublecortin-positive cell count in the hippocampal dentate gyrus. CSDS mice represented 
a distinct fecal microbiota cluster which differed compared with normal C57BL/6J mice, and the phenotype was 
rescued by PLE.
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Background
Depression is a chronic and recurrent affective and 
mental illness that has become the third most common 
disease in the world [1, 2]. Significant and persistent emo-
tional downturns are its principal clinical features, which 
are often accompanied by anxiety, suppressed thoughts, 
delusions, or hallucinations, decreased attention and 
memory, and sleep disturbances [3]. The rapid pace of 
life and the increasing pressure of work make depression 
a common disease that seriously threatens human health 
[4, 5]. Despite continuous research, treating depres-
sion remains a challenge due to its unclear etiology and 
pathology, and antidepressants remain insufficient for 
broad therapeutic success [6–8]. Selected serotonin 
reuptake inhibitors, serotonin–norepinephrine reuptake 
inhibitors, and other chemical drugs are successful in 
about 50–70% of patients with serious depressive disor-
ders [9–11]. However, these drugs vary in efficacy for dif-
ferent subtypes of depression and have drawbacks such 
as delayed onset, side effects, low efficiency, dependence, 
high rate of recurrence, and high price [12, 13]. Therefore, 
researchers seeking safer, less toxic, more effective, and 
cheaper antidepressants increasingly turn their attention 
to abundant and readily available, natural plants.

Persimmon (Diospyros kaki Thunb.) is a plant of the 
genus Diospyros of the Ebenaceae family [14]. Persim-
mon leaves contain a variety of active ingredients and 
nutrients, such as flavonoids [15], organic acids [16], cou-
marins, and triterpenes, which have potent preventive 
effects on cardiovascular and cerebrovascular diseases 
[17]. There is evidence that persimmon leaves can treat 
nervous system disorders, such as ischemic stroke [18] 
and Alzheimer’s disease [19], by regulating the immune 
function to inhibit inflammation and enhance neuro-
protection. Persimmon leaf has been shown to protect 
myocardial cells, decrease inflammation, and reduce 
oxidative stress in metabolic disorders [20, 21]. Fur-
thermore, a recent study showed that persimmon leaves 
could regulate platelet serotonin (5-HT) levels [22]. How-
ever, nothing is known regarding the activity of persim-
mon leaves on depression-related neurotransmitters and 
5-HT release.

The 5-HT receptors 1A (5-HT1A), 1B (5-HT1B), 
and 7 (5-HT7) play a crucial role in the pathophysiol-
ogy of depression [23, 24]. Furthermore, activation of 

postsynaptic 5-HT1A and 5-HT1B upregulates various 
signaling molecules such as cyclic adenosine monophos-
phate (cAMP), cyclic-AMP dependent protein kinase A 
(PKA), cAMP response element-binding protein (CREB), 
and brain-derived neurotrophic factor (BDNF) [25–28]. 
The cAMP/PKA/CREB signaling pathway controls vari-
ous biological activities related to cAMP, and in particu-
lar emotion [29]. Postmortem experiments revealed that 
individuals with significant depression had low levels of 
phosphorylated CREB in both the hippocampus and the 
prefrontal cortex, but persistent antidepressant therapy 
restored the level of phosphorylated CREB [30]. In an 
acquired helplessness animal model, elevated CREB 
expression in the hippocampus dentate gyrus caused 
antidepressant-like effects in the forced swimming test 
(FST) [31, 32]. Activated CREB increases the production 
of BDNF, a powerful trophic factor that regulates syn-
aptic plasticity and preserves the shape of neurons [33]. 
Antidepressants may increase or normalize the other-
wise low levels of cerebral BDNF in patients with major 
depressive disorder [27, 34, 35]. In neurons of newborn 
mice, cAMP/CREB/BDNF signaling is crucial in mediat-
ing neuroplasticity and contributes to antidepressant-like 
effects [36]. Thus, the present study aimed to eluci-
date the antidepressant activity of persimmon leaves in 
a chronic social defeat stress (CSDS) mouse model of 
depression to explore the underlying mechanisms.

Methods and materials
Animals
We obtained single-housed male CD-1 mice (4-month-
old sexually experienced retired breeders) from Charles 
River Laboratories and adult male C57BL/6 mice (22–
25  g) from the Laboratory Animal Center of Southern 
Medical University (Guangzhou, China). The experi-
mental protocols minimized the number of animals and 
their suffering. The mice were kept in a room with a 12-h 
light/dark cycle, at 22–23 °C and 55–65% humidity. Mice 
had free access to food (normal raw chow) and water 
for 1  week before the trials. All experimental protocols 
strictly followed the NIH Guidelines for the Care and Use 
of Laboratory Animals and were approved by the Animal 
Care and Use Ethics Committee of the Southern Medical 
University.

Conclusions:  PLE alleviated CSDS-induced depressive behaviors and spinal damage by suppressing serotonin reup-
take and activating the cAMP/CREB/BDNF signaling pathway. Simultaneously, PLE influenced the composition of the 
fecal microbiota in CSDS-subjected mice.

Keywords:  Persimmon leaf, Depression, Serotonin reuptake, Dendritic spines, cAMP/CREB/BDNF signaling pathway, 
Microbiota–gut–brain axis
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Reagents and treatments
Persimmon leaf extract (PLE) was supplied from Hutch-
ison Whampoa Guangzhou Baiyunshan Chinese Medi-
cine Co., Ltd. (#C21P005, Guangzhou, China); Fig.  1 
shows the HPLC chromatograms and the fingerprint of 
PLE. Fluoxetine was obtained from Aladdin (#F189157, 
Shanghai, China). PLE and fluoxetine were diluted in 
vehicle (0.5% DMSO, 0.5% carboxymethylcellulose 
sodium) to obtain working solutions. The drugs were 
prepared freshly before use. The other chemicals used 
were of analytical grade.

We obtained the GolgiStain™ Kit from FD NeuroTech-
nologies, Inc., (#PK401, Columbia, USA), ELISA Kits 
from Cusabio Biotech Co., Ltd. (#CSB-E08300m, Wuhan, 
China), and a BCA protein assay kit from Thermo Fisher 
Scientific (#23,235, Waltham, MA). A protease inhibitor 
cocktail (#P8849), and the anti-BDNF (#SAB2108004), 
and anti-β-actin (#39199) antibodies were obtained from 
Sigma-Aldrich (St. Louis, MO). We purchased a BCA 

protein assay kit (#23235) from Thermo Fisher Scientific 
(Waltham, MA), and the anti-phospho-CREB (#9198) 
and anti-CREB (#9197) antibodies from Cell Signaling 
Technology, Danvers, CT). Anti-PSD95 (#ab18258) and 
anti-synapsin1 (#ab64581) antibodies were obtained 
from Abcam (Cambridge, UK). Finally, the OCT com-
pound (#4583) was purchased from Tissue-Tek (Tor-
rance, UK), guinea pig anti-doublecortin (#ab2253) from 
Millipore (Massachusetts, USA), and Alexa Fluor 488 
AffiniPure goat anti-guinea pig IgG (H+L) (#100-545-
003) were obtained from Jackson (Pennsylvania, USA).

Experimental groups and social defeat stress animal model
CSDS was used as a murine model of depression. Fig-
ure 2a illustrates the experimental design. After 1 week 
of acclimatization, the mice underwent 10 days of 
the CSDS procedure, then were housed in isolation 
for 24  h and subjected to the social interaction test 
(SIT) on day 11. Next, we selected susceptible mice 

Fig. 1  High-performance liquid chromatography chromatograms and fingerprint of Persimmon leaf extract (PLE) and establishment of relative 
peaks. a HPLC chromatograms of PLE, 1-protocatechuic acid, 2-furoic acid, 3-isoquercitrin, 4-hyperin, 5-astragalin, 6-quercetin, and 7-kaempfetol. b 
Fingerprint of PLE
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for follow-up experiments (Fig.  2b, c). We randomly 
assigned 40 susceptible mice to four groups (n = 10 
each): (1) CSDS + vehicle; (2) CSDS + L-PLE (low-dose 
PLE (30.0  mg/kg)); (3) CSDS + H-PLE (high-dose PLE 
(60.0 mg/kg)); and (4) CSDS + fluoxetine (10.0 mg/kg). 
Mice received PLE or fluoxetine (i.g.) once a day for 10 
consecutive days. Mice in the Vehicle (Control group) 
and CSDS + vehicle groups received the same vol-
ume of vehicle. After the procedure, we performed the 
sucrose preference test (SPT), open field test (OFT), 
and tail suspension test (TST) on day 21, and the FST 
on day 22. Next, we sacrificed the animals for biochem-
ical analysis and Golgi staining. All experiments were 
performed in a blinded manner.

CSDS procedure
We performed the CSDS procedure as previously 
described [37]. C57BL/6 mice were used as “intruder” 
animals and were exposed to CD-1 for 10 days. The 
defeated mice were then each subjected to ongoing 
psychological stress from a CD-1 mouse in a shared 
home cage for the following 24  h using a transparent 
perforated barrier that allowed for visual, olfactory, and 
auditory interaction.

Social interaction test
We identified sensitive mice using the social interac-
tion test (SIT). Mice were placed in a unique, open-
field arena with an interaction zone for two 150-s trials. 
An empty cage was placed in the interaction zone in 
the first ‘no target’ trial. Next, a new CD-1 mouse was 
placed inside the cage in the interaction zone for a ‘tar-
get trial’. Ethovision video tracking software was used 
to track the time spent in the interaction zone (Noldus 
Technology). We calculated the social interaction ratio 
by dividing the time spent in the interaction zone in 
the ‘target trial’ by that of the ‘no target’ trial. Suscep-
tible mice were defined as having a social interaction 
ratio < 1.

Sucrose preference test
We performed the SPT as previously described with 
a minor modification [38]. On the first day, each cage 
was filled with two bottles of 1% sucrose solution. Mice 

were given 24 h to adapt to this sugar solution. On the 
second day, one of the bottles was replaced with pure 
water, and the positions of the two bottles were changed 
during this time (24 h). Mice received no water or food 
for 24  h and were then tested for 12  h. We calculated 
sucrose preference as follows: (weight of sucrose solu-
tion ingested)/(weight of water ingested + weight of 
sucrose solution ingested)/(weight of sucrose solution 
ingested)/(weight of water ingested + weight of sucrose 
solution ingested)/(weight of water ingested + weight 
of sucrose solution ingested).

Open field test
We analyzed the effects of PLE on the spontaneous loco-
motor activity of mice through an OFT. The mice were 
placed in a white wooden box (40 × 30 × 20 cm) for 5 min. 
Using an open-field experimental video analysis system 
(Smart 3.0, Video tracking system, Panlab, Barcelona, 
Spain), we recorded the rear number (the number of ver-
tical rearing movements within 5  min) and the crossing 
number (the number of times the animal passed from one 
square to another within 5 min) for each animal.

Tail suspension test and forced swim test
The TST and FST are widely used approaches to assess 
depressive behavior in animals [39]. For the TST, mice were 
suspended 20 cm above the floor using adhesive tape posi-
tioned 3 cm from the tip of their tails, and the total time 
of immobility during the 6 min session was recorded. For 
the FST, mice were placed in a transparent glass cylinder 
(10 cm in diameter, 25 cm in height) filled with fresh water 
at 23  °C, and the total time of immobility during the last 
4 min of the 6 min session was recorded. A camera with a 
video analysis system was used to capture immobility time 
in both tests.

Microdialysis studies
We implanted concentrated dialysis probes in the ventro-
medial prefrontal cortex of mice. Microdialysis tests were 
performed on freely moving animals 24 h after implanta-
tion. Six 20-min fractions were obtained after a 180-min 
stabilization period to achieve basal values, and another six 
samples were collected after the i.g. administration of treat-
ments. 5-HT, norepinephrine (NE), and gamma-aminobu-
tyric acid (GABA) were quantified using high-performance 
liquid chromatography (HPLC). After the tests, mice were 
euthanized and brain tissue was processed using standard 

Fig. 2  Experimental procedures and social interaction test. a Schematic timeline of the experimental procedure. b Time spent in the interaction 
zone. The data are presented as mean ± SD. *P < 0.05 vs. No target. c Social interaction ratio. Data are presented as mean ± SD. **P < 0.01 vs. Control 
group

(See figure on next page.)
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Fig. 2  (See legend on previous page.)
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histological procedures (cresyl violet staining) to ensure 
the proper placement of the dialysis probe placement. Mice 
with incorrect probe placement were discarded (< 10%).

Golgi staining and dendrite analysis
We performed Golgi staining using an FD Rapid Gol-
gistain Kit (PK401A, FD NeuroTechnologies, Colum-
bia, MD) following the manufacturer’s instructions. 
The brains of the mice were removed as quickly as pos-
sible from the skulls and were rinsed in double-distilled 
water to remove blood from the surface. The brains 
were then soaked in equal volumes of solutions A and B 
and kept at room temperature for 5 weeks in the dark. 
The brains were then transferred to solution C and kept 
in the dark for 7 days at room temperature. The brains 
were then sectioned into 100  μm slices using a freez-
ing microtome and mounted on gelatin-coated glass 
coverslips with solution C. The slices were incubated in 
a combination solution (solution D:solution E:distilled 
water, 1:1:2) for 10 min after drying at room tempera-
ture. Subsequently, the slices were dehydrated with 
50%, 75%, 95%, and 100% ethanol.

Image J was used to trace 10 neurons in the cortex 
for quantitative analysis. Pyramidal neurons in the cor-
tex were photographed under intense field illumination 
with a 100× oil immersion objective for dendritic spine 
analysis. A laser confocal microscope (LSM880 with 
Airyscan; Carl Zeiss, Oberkochen, Germany) coupled 
to a computer running the ZEN program was used to 
trace neurons. The neurons chosen for the tracing had 
a fully stained and isolated cell body and displayed fully 
stained and complete dendritic arbors. Dendritic traces 
were quantified using ImageJ software. The Neuron J 
plugin for Image J was used to count dendritic spines. 
The spines were counted at a magnification of 1000. The 
total number of spines along a 50 μm dendritic length 
was used to calculate spine density. The density of the 
spine was studied using pyramidal neurons from the 
cortex. The spines of the apical dendrites were counted. 
We used a common two-dimensional method to assess 
spine density, which allowed us to directly compare the 
treatment groups examined in the same way. The Sholl 
analysis plugin for Image J was used to determine the 
overall dendritic length and the number of branch-
ing points. Under 400×, the Sholl traced neurons and 
created a series of concentric rings around the neuron 
bodies. The beginning radius was set at 10.00 μm, with 
a radius interval of 10  μm between circles. The den-
drites intersecting the concentric rings were counted.

Enzyme‑linked immunosorbent assay
Cortical cAMP was quantified using an ELISA kit 
according to the manufacturer’s instructions. The sam-
ples were tested in duplicate and the cAMP levels were 
adjusted to total protein.

Western blot
Western blot analysis was performed as previously 
described, with minor changes. The mice’s cortex was 
homogenized in RIPA lysis buffer (containing 1% pro-
tease inhibitor cocktail and 1% phosphatase inhibi-
tor cocktail) and centrifuged at 12,000×g for 10  min. A 
BCA protein assay kit was used to determine the total 
protein content. We then separated the proteins by elec-
trophoresis on a sodium dodecyl sulfate-polyacrylamide 
gel (SDS-PAGE) and transferred the protein bands onto 
polyvinylidene fluoride membranes. The membranes 
were incubated for 2  h at room temperature in phos-
phate buffered solution with Tween 20 (TBST) contain-
ing 5% skim milk to inhibit nonspecific binding sites. The 
membranes were then washed three times with PBST 
before being incubated overnight at 4 °C with the appro-
priate primary antibodies, such as anti-phospho-CREB 
(1:1000), anti-CREB (1:1000), anti-BDNF (1:1000), anti-
PSD95 (1:1000), anti-synapsin-1 (1:1000), or anti-β-actin 
(1:1000). The membranes were then rinsed with TBST 
and incubated with appropriate secondary antibodies for 
1 h at room temperature. Finally, the bands were visual-
ized using a Kodak Digital Science ID (Kodak, Rochester, 
NY) and quantified with Image J software (National Insti-
tutes of Health, Bethesda, MD).

Immunofluorescence
Mice were perfused with 4% paraformaldehyde (PFA) 
and ice-cold phosphate buffered saline (PBS). The brains 
were post-fixed in 4% PFA and dehydrated in graded 
sucrose solutions. The tissue was embedded in OCT 
compounds and cut into 40 μm-brain slices using a fro-
zen slicer (Leica, Germany, #CM1850-1-1). Sections 
were washed with PBS and then soaked in 0.3% Triton 
for 15  min. After blocking for 2  h at room temperature 
with 5% bovine serum albumin, sections were incubated 
overnight at 4 °C with guinea pig anti-doublecortin. The 
sections were then incubated for 2  h at room tempera-
ture with a suitable secondary antibody (Alexa Fluor 488 
AffiniPure goat anti-guinea pig IgG (H + L) or Alexa 
Fluor 488 AffiniPure goat anti-guinea pig IgG (H + L)) 
and 10 min with DAPI. The images were analyzed with a 
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confocal microscope (Nikon, Japan). Nikon Imaging Ele-
ments software was used to examine six fields from each 
group for immunofluorescence quantification. Double-
cortin positive cells (DCX+) were counted in each field.

16S rRNA gene sequencing
Before the experiment, feces samples were collected from 
the experimental mice and kept at – 80 °C. Genomic DNA 
was extracted from the samples using the MagPure Soil 
DNA KF Kit (Cat# D6356-F-96-SH, Qiagen, Venlo, The 
Netherlands). Using agarose gel electrophoresis and Nan-
oDrop 2000 spectrophotometer (Thermo Fisher Scientific, 
Waltham, MA, USA), the purity and concentration of the 
isolated DNA were determined. Primers targeting V3–V4 
regions (5′-TAC​GGR​AGG​CAG​CAG-3′, 5′-GGG​TAT​
CTA​ATC​CT-3′) were used to amplify bacterial 16S rRNA 
gene, the reverse primer contained a sample barcode and 
both primers were connected with an Illumina sequenc-
ing adapter. The DNA were then Sequenced on an Illumina 
NovaSeq6000 with two paired-end read cycles of 250 bases 
each. (Illumina Inc., San Diego, CA; OE Biotech Company; 
Shanghai, China). Raw sequencing data were in FASTQ 
format. The QIIME1 package (http://​qiime.​org/) was 
used to evaluate and selected representative reads of each 
OTU, and all representative sequences were annotated and 
blasted against Silva database Version 128 (https://​www.​
arb-​silva.​de/). The microbial diversity in feces samples was 
estimated using the alpha diversity that include Observed-
species index and Shannon index. The binary jaccard dis-
tance matrix performed by QIIME software was used for 
binary jaccard Principal coordinates analysis (PCoA). The 
16S rRNA gene amplicon sequencing and analysis were 
conducted by OE Biotech Co., Ltd. (Shanghai, China).

Statistical analysis
All data were analyzed using SPSS version 22.0 (SPSS Inc., 
Chicago, IL) and the data were presented as mean ± stand-
ard deviation (SD). Data were analyzed using one-way 
ANOVA followed by Bonferroni’s post hoc test. Differ-
ences were considered significant when P < 0.05.

Results
PLE alleviated depressive‑like behaviors in mice exposed 
to CSDS
We investigated the effects of PLE in mice with depres-
sive-like behavior. Mice received PLE (30 and 60  mg/kg) 

or fluoxetine as control once a day for 10 days. To assess 
depressive-like behaviors, we performed SPT, OFT, TST, 
and FST. First, the mice treated with vehicle alone showed 
a strong preference for the sucrose solution, while the 
CSDS-challenged mice showed only a slight preference 
for the same solution (P < 0.01, Fig.  3a), which confirmed 
that these animals displayed depressive-like behaviors. 
PLE and fluoxetine restored sucrose preference in CSDS 
mice. Second, compared to the vehicle group, mice in the 
CSDS + vehicle group had a longer immobility time in the 
TST (P < 0.01; Fig. 3b) and FST (P < 0.01, Fig. 3c). However, 
PLE and fluoxetine significantly reduced the immobility 
time in the TST (P < 0.05 and P < 0.01, respectively) and FST 
(P < 0.05 and P < 0.01, respectively). Finally, we observed 
that for mice subjected to CSDS, PLE did not influence the 
distance traveled (P > 0.05, Fig.  3d). Put differently, treat-
ment with PLE did not affect the ability of the mice to move 
in the OFT (P > 0.05, Fig. 3e, f ), implying that PLE did not 
produce drowsiness in mice. Thus, PLE had a significant 
antidepressant-like effect on mice.

PLE increased the dendritic complexity and spine density 
in CSDS‑exposed mice
Using Golgi staining, we assessed the complexity of the 
dendrite and spine density of cortical neurons in mice 
to study the influence of PLE on dendritic morphology. 
The mice in the Vehicle group had a long total dendritic 
length and abundant branching points, but the mice in 
the CSDS + vehicle group had significantly shorter total 
dendritic length (P < 0.01; Fig. 4a, b) and branching points 
(P < 0.01; Fig.  4c). In contrast, treatment with PLE and 
fluoxetine both significantly improved the overall den-
dritic length (P < 0.05, P < 0.01; Fig. 4a, b) and branching 
points (P < 0.05, P < 0.01; Fig. 4c). Additionally, we found 
that spine density varied between groups (Fig.  4d, e). 
The PLE-treated groups had a higher spine density com-
pared to the CSDS + vehicle group. Thus, PLE effectively 
restored CSDS-induced dendritic complexity and reduc-
tions in spine density.

PLE enhanced the PSD95 and synapsin‑1 levels 
in CSDS‑subjected mice
Next, we measured PSD95 and synapsin-1 protein lev-
els in the cortex of animals subjected to CSDS to see 
how PLE affected the expression of synapse-related pro-
teins. CSDS treatment induced a significant decrease 

(See figure on next page.)
Fig. 3  Antidepressant-like effect of Persimmon leaf extract (PLE) in mice subjected to chronic social defeat stress (CSDS). a Sucrose preference ratio 
in the sucrose preference test (SPT). b Immobility times in the tail suspension test (TST). c Immobility times in the forced swim test (FST). d Distance 
traveled in the open field test (OFT). e Rear numbers in the OFT. f Crossing numbers in the OFT. Data are presented as mean ± SD (n = 8 in each 
group). **P < 0.01 vs. Vehicle group; #P < 0.05, ##P < 0.01 vs. CSDS + Vehicle group

http://qiime.org/
https://www.arb-silva.de/
https://www.arb-silva.de/
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Fig. 3  (See legend on previous page.)
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Fig. 4  Effects of Persimmon leaf extract (PLE) on the synaptic plasticity in the cortex of mice subjected to chronic social defeat stress (CSDS). 
a Photomicrographs of Golgi-stained pyramidal neurons in the cortex of mice treated with PLE or fluoxetine for 10 days (scale bar: 50 μm). b 
Corresponding quantification data of the dendritic length in mice treated with PLE or fluoxetine for 10 days. c Total number of dendritic branching 
points in mice treated with PLE or fluoxetine for 10 days. d Photomicrographs of dendrite fragments with visible spines in the cortex of mice treated 
with PLE or fluoxetine for 10 days (scale bar: 10 μm). e Corresponding quantification data of dendritic spines. Data are presented as mean ± SD 
(n = 3 in each group). **P < 0.01 vs. Vehicle group; #P < 0.05, ##P < 0.01 vs. CSDS + Vehicle group
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in PSD95 (P < 0.01, Fig.  5a, b) and synapsin-1 (P < 0.01, 
Fig. 5a, c) protein levels compared to mice in the Vehicle 
group. Furthermore, 10 days of PLE or fluoxetine treat-
ment resulted in a significant increase in the expression 
of PSD95 (P < 0.05, P < 0.01, Fig.  5a, b) and synapsin-1 
(P < 0.05, P < 0.01, Fig. 5a, c). Thus, the antidepressant-like 
activity of PLE was associated with the synthesis of syn-
aptic proteins such as PSD95 and synapsin-1.

PLE inhibited 5‑HT reuptake in the cortex of mice exposed 
to CSDS
We quantified the level of neurotransmitters in the 
brain of CSDS-exposed mice to see determine how 
PLE affects extracellular neurotransmitter levels in the 

cortex. Our results showed that prolonged PLE treat-
ment had no influence on extracellular 5-HT (P > 0.05, 
Fig.  6a), NE (P > 0.05, Fig.  6c), or GABA (P > 0.05, 
Fig. 6e) levels, while fluoxetine significantly increased 
extracellular 5-HT levels (P < 0.01, Fig.  6a). We also 
observed that CSDS treatment induced a significant 
decrease in the absolute baseline 5-HT levels com-
pared to mice in the Vehicle group (P < 0.01; Fig.  6b), 
which were restored by treatment with PLE or fluox-
etine (P < 0.01; Fig.  6b). Meanwhile, these treatments 
did not significantly alter the absolute baseline levels 
of NE or GABA in the cortex of mice (P > 0.05, Fig. 6d, 
f ). Therefore, PLE only inhibited 5-HT reuptake in the 
cortex of CSDS-exposed mice.

Fig. 5  Effects of Persimmon leaf extract (PLE) on cortical levels of PSD95 and synapsin-1 protein of mice subjected to chronic social defeat 
stress (CSDS). a Examples of original western blot bands showing cortical PSD95 and synapsin-1 expression. b Relative levels of PSD95 protein. c 
Relative levels of synapsin-1 protein. Data are presented as mean ± SD (n = 3 in each group). **P < 0.01 vs. Vehicle group; #P < 0.05, ##P < 0.01 vs. 
CSDS + Vehicle group
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PLE increased cortical cAMP, phosphorylated CREB, 
and BDNF levels in mice exposed to CSDS
To further explore the underlying mechanisms, we evalu-
ated cAMP levels in the brain of mice subjected to CSDS. 
PLE (30 and 60  mg/kg) dramatically increased cortical 

cAMP levels (P < 0.01, Fig. 7a). Therefore, we investigated 
the amount of phosphorylated CREB in mice exposed 
to CSDS. We discovered that CSDS inhibited phospho-
rylated CREB compared to mice treated with vehicle 
alone, whereas PLE and fluoxetine restored the loss in 

Fig. 6  Effects of persimmon leaf extract (PLE) on cortical levels of extracellular neurotransmitters in mice subjected to chronic social defeat stress 
(CSDS). a Levels of the extracellular serotonin receptor (5-HT). b Absolute basal levels of 5-HT. c Levels of the extracellular norepinephrine (NE). 
d Absolute basal levels of NE. e Levels of extracellular gamma-aminobutyric acid (GABA). f Absolute basal levels of GABA. Data are presented as 
mean ± SD (n = 3 in each group). **P < 0.01 vs. Vehicle group; ##P < 0.01 vs. CSDS + Vehicle group
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CREB phosphorylation without affecting overall CREB 
level (P < 0.01, Fig. 7b, c). BDNF is a downstream target 
of CREB, and BDNF deficiency is associated with the 
pathophysiology of severe depression. In our model, mice 
treated with vehicle showed high expression of BDNF, 
while CSDS treatment markedly reduced the expression 
of BDNF. Furthermore, PLE or fluoxetine treatment sig-
nificantly restored the loss of BDNF expression (P < 0.05 
and P < 0.01, Fig. 7b, d). These results suggested that PLE 
exerts its antidepressant-like effect through the regula-
tion of the cAMP/CREB/BDNF signaling pathway.

PLE promoted neurogenesis in mice exposed to CSDS
PLE activated the cAMP signaling pathway and 
increased synaptic-related protein expression levels. 
To investigate whether PLE promotes neurogenesis in 
the hippocampus of CSDS-subjected mice, we counted 
the number of DCX+ cells in the dentate gyrus using 
immunofluorescence and quantified DCX expression 
using western blot. CSDS treatment induced a signifi-
cant decrease in DCX+ cells and neural progenitor cells 
in the dentate gyrus compared to mice in the Vehicle 
group, while PLE or fluoxetine treatment restored the 

Fig. 7  Effects of Persimmon leaf extract (PLE) on cortical levels of cortical cyclic adenosine monophosphate (cAMP), phosphorylated cAMP 
response element binding protein (p-CREB) and brain-derived neurotrophic factor (BDNF) in mice exposed to chronic social defeat stress (CSDS). 
a cAMP levels. b Examples of original Western blot bands showing cortical expression of p-CREB and BDNF. c Relative levels of p-CREB. d Relative 
levels of BDNF. Data are presented as mean ± SD (n = 3 in each group). **P < 0.01 vs. Vehicle group; #P < 0.05, ##P < 0.01 vs. CSDS + Vehicle group
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Fig. 8  Effect of PLE on cortical doublecortin (DCX) in mice subjected to chronic social defeat stress (CSDS). a DCX (green) and DAPI (blue) in the 
cortex of mice treated with Persimmon leaf extract (PLE) or fluoxetine for 10 days (scale bar: 100 μm). b Examples of original western blot bands 
showing cortical DCX expression levels. c Relative levels of DCX. Data are presented as mean ± SD (n = 3 in each group). **P < 0.01 vs. Vehicle group; 
#P < 0.05, ##P < 0.01 vs. CSDS + Vehicle group

(See figure on next page.)
Fig. 9  16S rRNA gene sequencing of the gut microbiota in mice. a Timeline of the experiments. b The sucrose preference ratio in sucrose 
preference test (SPT). c The immobility time in tail suspension test (TST). d The immobility time in forced swimming test (FST). e Observed species 
index. f Shannon index. g PCoA analysis. h Heatmap showing the relative abundance of differential flora at the phylum level. Relative abundance of 
different bacteria at the phylum level. i Heatmap showing the relative abundance of Parasutterella, Ruminococcus, Geothrix and Succinivibionaceae_
UCG-002 at the genus level. Data are presented as mean ± SD (n = 3 in each group). *P < 0.05 vs. Control group
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Fig. 9  (See legend on previous page.)
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loss of DCX+ cells and neural progenitor cells in mice 
(Fig.  8a). Furthermore, CSDS treatment markedly 
reduced DCX expression in mice, which was reversed 
by PLE or fluoxetine treatment in the hippocampal cells 
of mice (P < 0.05 and P < 0.01, Fig.  8b, c) according to 
western blot findings.

CSDS led to depression‑like behavior and gut microbial 
changes in mice
The occurrence and development of depression was 
accompanied with a change in the composition of the gut 
microbiota. Therefore, to further study the relationship 
between gut microbial symbiosis and anti-depression 
effect of PLE, we collected fecal samples and identi-
fied the fecal microbial communities of C57BL/6J mice 
and CSDS-treated mice by 16S rRNA gene sequencing. 
CSDS-subjected mice showed anhedonia-like behavior in 
the SPT, and despair-like behavior in the TST and FST 
(Fig. 9b–d). There were no differences in the total num-
ber of microbial species or diversity between the two 
groups (P > 0.05, Fig. 9e, f, h, i). CSDS mice presented a 
distinct fecal microbiota distribution which differed from 
that of the control C57BL/6J mice (Fig.  9g). The differ-
ences between the two groups were caused by a lower 
abundance of Parasutterella and Ruminococcus at the 
genus level in the fecal microbiota of CSDS-subjected 
mice, while Geothrix and Succinivibionaceae_UCG-002 
were increased (Fig. 9j).

PLE alleviated depressive behavior by modulating 
intestinal microbes in mice exposed to CSDS
The therapeutic effect of traditional antidepressants may 
influence the gut microbiota [40]. We gavaged CSDS-
subjected mice with PLE and evaluated the effects of PLE 
on gut microbial dysbiosis. Following gavage with PLE, 
the depression-like behavior was rescued (Fig.  10b–d) 
and there were no differences between the two groups 
in the total number of microbial species or in species 
diversity (P > 0.05, Fig. 10e, f, h, i). PLE-treated mice also 
represented a distinct fecal microbiota cluster, which dif-
fered from that of CSDS-subjected mice not receiving 
PLE (Fig. 10 g). At the genus level, Parasutterella, Rumi-
nococcus, Geothrix, and Succinivibionaceae_UCG-002 in 
the PLE-treated mice fecal microbiota were decreased 

(Fig. 10j). Thus, we speculated that Geothrix and Succini-
vibionaceae_UCG-002 contributed to the anti-depressant 
effect of PLE.

Discussion
PLE exerted antidepressant-like effects in CSDS-sub-
jected mice by inhibiting 5-HT reuptake as supported by 
the following findings: (1) PLE restored sucrose prefer-
ence in the SPT and shortened the duration of immobil-
ity in both the TST and FST but did not affect locomotor 
activity in the OFT. (2) PLE significantly enhanced den-
dritic length, branching points, and dendritic spine den-
sity in the cortex. (3) PLE significantly increased the 
expression of PSD95 and synapsin-1 in the cortex of mice 
subjected to CSDS. (4) PLE inhibited 5-HT reuptake in 
CSDS-subjected mice. (5) PLE increased the level of 
cAMP and BDNF expression, as well as activated CREB 
phosphorylation in the cortex of CSDS-subjected mice. 
(6) PLE increased the number of DCX+ cells in the den-
tate gyrus, facilitating neurogenesis in mice subjected 
to CSDS. (7) PLE could reverse the change of microbial 
species in CSDS-exposed mice. Thus, the present study 
provided evidence that PLE exerted its antidepressant-
like activity in mice subjected on CSDS by inhibiting 
5-HT reuptake, regulating the cAMP/CREB/BDNF sign-
aling pathway, and facilitating neurogenesis. The anti-
depressant-like effect of PLE may be related to affecting 
the gut microbiota of CSDS-exposed mice. A summary 
of the anti-depression of PLE in CSDS-exposed mice 
and potentially related signaling pathways are shown in 
Fig. 11.

During life activities, people constantly interact with 
each other, social challenges appear to be one of the most 
common stresses in humans and social animals. Mice 
repeatedly exposed to social defeat stress develop anhe-
donia, behavioral despair, and social avoidance. CSDS is a 
widely recognized animal model that simulates the etiol-
ogy of human depression, it has been extensively utilized 
to investigate the pathogenesis of depression [41]. In our 
study, mice exposed to CSDS displayed depressive-like 
behaviors, including social avoidance, anhedonia, and 
extended immobility in the TST and FST.

Flavonoids have potential as treatments for emotional 
disorders such as anxiety and depression, for exam-
ple, they may improve depression in young people [42, 

Fig. 10  PLE alleviates depressive behavior by modulating intestinal microbes in mice exposed to CSDS. a Timeline of the experiments. b The 
sucrose preference ratio in sucrose preference test (SPT). c The immobility time in tail suspension test (TST). d The immobility time in forced 
swimming test (FST). e Observed species index. f Shannon index. g PCoA analysis. h Heatmap showing the relative abundance of differential flora 
at the phylum level. Relative abundance of different bacteria at the phylum level. i Heatmap showing the relative abundance of Parasutterella, 
Ruminococcus, Geothrix and Succinivibionaceae_UCG-002 at the genus level. Data are presented as mean ± SD (n = 3 or 8 in each group). *P < 0.05 vs. 
Control group

(See figure on next page.)
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Fig. 10  (See legend on previous page.)
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43]. In addition, extensive research suggests that flavo-
noids are the most significant therapeutic components 
in Persimmon leaves [44, 45]. Based on these data, we 
hypothesized that Persimmon leaves exert antidepres-
sant properties. Not unexpectedly, PLE administration 
significantly reduced behavior deficits in CSDS-subjected 
animals in the SPT, TST, and FST without affecting loco-
motor activity. These findings validated the antidepres-
sant-like action of PLE in mice. Thus, this study is the 
first to show that PLE alleviated depressive-like behavior 
in mice. However, while our study supports the possible 
applicability of PLE, further testing, particularly rigorous 
toxicological studies of PLE, must be conducted in the 
future.

5-HT, the most important neurotransmitter in the 
onset and progression of depression, may regulate and 
govern a range of signaling pathways in the nervous sys-
tem [23, 46, 47]. However, other neurotransmitters, such 
as dopamine and glutamate, are linked to Alzheimer’s 
and Parkinson’s disease, but not to depression [48]. 5-HT 
signaling and 5-HT receptors tightly regulate neuro-
trophic factors levels and adult neurogenesis. The cAMP/
CREB/BDNF signaling network is a canonical pathway 

responsible for the physiological effects of 5-HT [49, 
50]. It is a common target mechanism for many classes 
of antidepressant [51]. Previous studies showed that the 
levels of 5-HT could increase the expression of BDNF in 
the brain of rat, and BDNF also affects serotonergic neu-
rotransmission in both baseline and activated situations 
[52]. In our study, we discovered that prolonged PLE 
treatment had no influence on extracellular 5-HT levels, 
but could increase the absolute baseline 5-HT level in 
cortex of CSDS-exposed mice, which suggested that PLE 
only inhibited 5-HT reuptake in the cortex. Therefore, 
PLE may exert its antidepressant-like effect by inhibiting 
5-HT reuptake and regulating the cAMP/CREB/BDNF 
signaling pathway in cortex of CSDS-exposed mice. 
Inhibiting the cAMP/CREB/BDNF pathway or the elimi-
nation of critical cAMP/CREB/BDNF proteins could 
confirm the antidepressant-like action mechanism of 
PLE. It has been shown that cortex is a node in emotion 
regulation in several studies, activation of the cAMP/
CREB/BDNF signaling pathway in the cortex is critical 
in antidepressant, but the hippocampus is more related 
with memory, thus we focus on the cortex.

Fig. 11  PLE alleviated CSDS-induced depressive behaviors by inhibiting serotonin reuptake and influenced the composition of the fecal microbiota
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BDNF is a powerful neurotrophin that helps neurons 
retain their shape and regulates brain plasticity. It is also 
important to convert synaptic activity into long-term syn-
aptic memory [53]. The pathological process of depression is 
related to a lack of synaptic plasticity [54]. Depression raises 
blood corticosterone levels, lowers BDNF levels, and inhibits 
neurogenesis [55]. Antidepressants that enhance BDNF lev-
els and neurogenesis in the cortex and hippocampus include 
fluoxetine, a selective 5-HT reuptake inhibitor [56]. Inhibi-
tion of neurogenesis or neural plasticity reduces the impact 
of antidepressants, suggesting that neurogenesis and neural 
plasticity participate in the amelioration of depressive-like 
behaviors [57]. Numerous studies have revealed that CREB 
and BDNF are essential regulators of neurogenesis, neural 
plasticity, and neuronal survival [58]. Meanwhile, our previ-
ous study found that a new phosphodiesterase 4 inhibitor, 
FCPR16, can stimulate the cAMP/CREB/BDNF signaling 
pathways in mice subjected to chronic unpredictable moder-
ate stress, resulting in an increase in DCX+ cells in the hip-
pocampus and improved neurogenesis [59]. Stress reduces 
the expression of neurotrophic factors (e.g., BDNF) in the 
limbic and cortical regions, which supports the neurotrophic 
theory [53]. Researchers have shown a decrease in BDNF in 
the hippocampus and prefrontal cortex of rodents exposed 
to stressful situations [60, 61]. Herein, we revealed that PLE 
raised BDNF levels. Thus, PLE may have neuroprotective 
benefits by modulating the expression of BDNF in the brain.

The creation and removal of dendritic spines requires 
proper expression of synaptic proteins [62]. In our previous 
studies, we discovered that CSDS reduced dendritic length, 
branching points, and dendritic spine density [63]. Here, 
treatment with PLE effectively reversed these morphological 
changes. Furthermore, PLE affected cytoskeleton dynam-
ics and changed dendritic shape by stimulating cAMP/
CREB/BDNF signaling pathways. Dendritic spines play a 
crucial role in neural transmission and neuroplasticity [64]. 
Changes in dendritic morphology contributed to prolonged 
stress-induced behavioral abnormalities, while depression 
decreased spine density and structure [65]. The mechanisms 
behind the atrophy of dendritic spines and branching in 
response to chronic stress are currently unknown, but reduc-
tion in neurotrophic factor levels and synaptic protein pro-
duction could contribute to the consequences of stress [66]. 
BDNF may regulate dendritic length and branching in neu-
rons, while CREB mediates the beneficial effects of BDNF 
on dendritic length and complexity [67]. We discovered that 
PLE increased the levels of synapsin-1 and PSD95, which 
involved in the development, morphology, anti-inflamma-
tory (Additional file  1: Fig. S1)  and functions of synapses 
[68]. Therefore, the increased expression of synaptic pro-
teins is responsible for the morphological changes caused by 
PLE. Similarly, PLE increased the number of DCX+ cells in 

the hippocampus of mice, which suggests that PLE improves 
neurogenesis in CSDS-subjected mice.

In CSDS-treated mice, 16S rRNA analysis revealed 
aberrant composition of the intestinal microbiota. The 
composition of several microbiota was altered in CSDS-
exposed mice models exhibiting depression-like symp-
toms compared to control C57BL/6J mice in this study. 
Geothrix and Succinivibionaceae_UCG-002 were con-
siderably reduced in CSDS-treated mice compared to 
control C57BL/6J animals at the genus level. The gut 
microbiota of MDD rodent model and healthy controls 
were shown to be considerably different, with significant 
changes in the relative abundance of Geothrix and Suc-
cinivibionaceae_UCG-002. We also discovered that treat-
ment with PLE could rescue depressive-like behaviors 
and lower the abundance of Geothrix and Succinivibion-
aceae_UCG-002 in CSDS-exposed mice, indicating that 
Succinivibionaceae_UCG-002 may play a role in the anti-
depressant effects of PLE. Despite this, further research is 
needed to validate the role of Succinivibionaceae_UCG-
002 in the antidepressant activity of PLE.

Conclusions
Our study showed that PLE exerts an antidepressant-like 
effect in CSDS-subjected mice and improved neurogen-
esis. Furthermore, the observed behavioral effects were 
associated with the inhibition of 5-HT reuptake, the 
activation of the cAMP/CREB/BDNF signaling pathway, 
and the upregulation of cortical synapsin-1 and PSD95 
expression. Simultaneously, PLE influenced the compo-
sition of the fecal microbiota in CSDS-subjected mice. 
Taken together, our results indicate that PLE has antide-
pressant-like effects and should be considered as a candi-
date anti-depressive treatment.
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