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Abstract

Background: Puerarin (daidzein 8-C-glucoside) has potential on preventing osteoporosis. This study aims to
investigate the effects of puerarin on osteogenesis and adipogenesis in vitro.

Methods: CCK-8 assay, alkaline phosphatase (ALP) activity and Alizarin Red S were used to measure the effects of
puerarin on proliferation, osteoblastic differentiation, and mineralization in osteoblast-like MC3T3-E1 cells. The
effects of puerarin on adipogenesis were measured by Oil Red O staining and intracellular triglyceride level in
preadipocyte 3T3-L1 cells. The mRNA and protein levels of osteogenesis- and adiopogenesis-related factors were
detected by gRT-PCR and western blot, respectively. Further, the secreted osteocalcin levels and nuclear
translocation of B-catenin were detected by ELISA and immunofluorescence assay, respectively.

Results: As to osteogenesis, puerarin could stimulate proliferation (1 uM, P=0.012; 10 uM, P=10.015; 20 uM,
P=0.050), ALP activity (20 uM, P=0.008) and calcium nodule formation (20 uM, P=0.011) in a dose-dependent
manner. Puerarin (20 uM) promoted osteocalcin secretion (P=0.004) and the protein expression of both
osteopontin (P=0.001) and osteoprotegerin (P=0.003). As to adipogenesis, puerarin suppressed adipocytes
formation and intracellular triglyceride level (P=0.001). In addition, puerarin (20 uM) decreased the mRNA and
protein levels of CCAAT/enhancer binding protein a (P=0.001, P=0.002), proliferator-activated receptor y (P =0.005,
P=0.003), and adipocyte lipid-binding protein 4 (P=0.001, P=0.001). Moreover, phosphorylation of AKT1-Ser**’

(10 uM, P=0.003; 20 pM, P=0.007) and GSK-Ser” (10 uM, P=0.005; 20 uM, P=0.003), and the nuclear translocation
of B-catenin (10 uM, P=0.006; 10 uM, P=0.002) were increased in 3T3-L1 cells treated by puerarin.

Conclusion: Puerarin promoted osteogenesis and inhibited adipogenesis in vivo, and Akt/GSK-3{3/B-catenin
signaling pathway was involved in the suppression of adipogenesis.

Background

Postmenopausal osteoporosis is usually associated with
aging and decline in gonadal function [1]. The main clin-
ical manifestations of this metabolic disorder are fragility
fracture because of imbalance between osteoclast-
mediated bone resorption and osteoblast-mediated bone
formation [2]. The first-line therapeutic strategy for post-
menopausal osteoporosis is estrogen replacement therapy
(ERT) to prevent bone loss and increase bone formation
[3], through the enhancement of osteoblast differentiation
and bone formation [4-6], and inhibition of osteoclast
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maturation and function [7]. As ERT increases the risk of
breast cancer, endometrial cancer and vaginal bleeding
[8]. Thus, there are increasing interests in the use of
plant-derived estrogens, known as phytoestrogens.
Phytoestrogens could bind to estrogen receptors
(ERs) and have estrogen-like activity [9]. Puerarin (daid-
zein 8-C-glucoside) (Figure 1) is one of the major
phytoestrogens isolated from the Pueraria Labata (Willd.)
Ohwi (a wild creeper leguminous plant) [10], which is an
important crude herb in traditional Chinese medicine
(TCM) for treating various medical conditions, e.g, liver
diseases [11], hypertension [12] and angina pectoris [13],
as well as a healthy dietary supplement [14]. Recently, re-
searchers tested puerarin on its role in the prevention of
osteoporosis, since it could prevent bone loss in ovariecto-
mized (OVX) mice [15] and promote the new bone forma-
tion in osteoblast implants [16]. In addition, puerarin
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Figure 1 Chemical structure of puerarin. Its molecular formula is
C15H20010. MW (molecular weight): 432.38.

significantly increased alkaline phosphatase (ALP) activity
and mineral nodules in osteoblast cells [16]. Puerarin also
could increase the phosphorylartion of extracellular
signal-regulated protein kinase (ERK) and p38-reactivating
kinase (p38) to activated MAPK pathway in the endothe-
lial cells [17]. As we know, ERK and p38 are the two main
MAPKSs which both interplay with BMP pathway in osteo-
genic differentiation [18]. Mesodermal stem cells (MSCs)
can differentiate into a variety of cell types, including oste-
oblasts, adipocytes, chondroblasts and myoblasts [19], and
the osteogenic and adipogenic lineages are closely related
[20,21]. When the balance between osteoblast and adipo-
cyte differentiation was disrupted, it would cause diseases,
such as osteoporosis or osseous hyperplasia [22,23].
Puerarin and daidzein have similar structures to estrogen.
Some reports demonstrated that daidzein promoted osteo-
genic, inhibited adipogenic differentiation and exhibited
preventive activity on bone loss in OVX animals [24,25].
Thus, we would hypothesize that puerarin might promote
osteogenesis and inhibit adipogenesis. This study aims to
investigate the dual effects and molecular mechanism of
puerarin on osteogenesis and adipogenesis in vitro.

Materials and methods

Materials

Puerarin was purchased from Nanjing TCM institute of
Chinese Materia Medica (TCMO054-110528, China). The
purity of puerarin was 99.35% as tested by high perform-
ance liquid chromatography (HPLC) analysis. Cell culture
reagents were purchased from Gibco (USA). Cell Counting
Kit-8 (CCK-8) was purchased from DOJINDO Lab
(Tokyo, Japan). Alkaline phosphatase kit (COD 11592)
was purchased from Biosystems (Spain). The primers were
purchased from BGI (China). RIPA lysis buffer was pur-
chased from Santa Cruz (CA, USA). BCA protein assay kit
(23227), NE-PER nuclear and cytoplastic extraction re-
agents kit (78833) were purchased from Pierce (USA).
RNeasy total RNA extraction kit (AP-MN-MS-RNA-50)
was purchasd from Axygen (USA). PrimeScript RT re-
agent Kit (DRR037A) and SYBR® Green PCR Master Mix
(DRR420A) were purchased from TaKaRa (Japan). PVDF
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membrane was purchased from Bio-Rad (Hercules, CA).
ECL advanced western blotting detection kit was pur-
chased from Amersham (UK). Anti-CEBP« antibody, anti-
AKT1 antibody, anti-AKT1 (phospho Ser®”?) antibody,
anti-GSK3p antibody, anti-GSK3p (phospho Ser’) antibody
and anti-RUNX2 antibody were purchased from Abcam
(USA). PPAR-y antibody was purchased from cell signaling
technology (USA). FABP4 antibody was purchased from
ExCell Biology (China). B-catenin rabbit monoclonal anti-
body and HRP goat anti-rabbit IgG antibody were pur-
chased from Abgent (San Diego, USA), and anti-p actin
monoclonal antibody and DyLight 488 AffiniPure goat
anti-rabbit IgG (H+L) were purchased from EarthOx
(San Diego, USA). Enzyme-linked immunosorbent assay
kit for osteocalcin was purchased from Uscn (Wu Han,
China). EnzyChromTM triglyceride assay kit was pur-
chased from BioAssay Systems (CA, USA). All the other
reagents and chemicals were purchased from Sigma-
Aldrich, Inc. (USA).

Cell culture

3T3-L1 preadipocytes (CL-173) and MC3T3-E1 osteo-
blastic cells (subclone 14, CRL-2594) were purchased from
ATCC (American Type Culture Collection, Manassas, VA,
USA). 3T3-L1 cells were maintained in DMEM with 10%
FBS and MC3T3-E1 were maintained in a-MEM with 10%
FBS in incubator with 5% CO, at 37°C.

Cell Toxicity

Cell viability was assessed by CCK-8 kit. 3T3-L1
preadipocyte cells or MC3T3-E1 cells were seeded at
5000 cells/well in 96-well plates. After 24 h incubation,
the cells were treated with puerarin at concentrations of
0, 0.1, 1, 10 and 20 pM. After 48 h, 100 pL medium
solution (content 10% CCK-8) was added and incubated
at 37°C for 1 h. Finally, absorbance was measured on
a microplate reader Synergy4 (PerkinElmer, USA) at
490 nm. The experiment was repeated three times.

Bromodeoxyuridine (BrdU) proliferation assay

Cell proliferation was evaluated by the BrdU assay (Roche
Applied Science, Germany), a colorimetric immunoassay
based on the incorporation of BrdU during DNA synthesis
in proliferating cells. Results were obtained according to
the manufacturer's instructions by a microplate reader
Synergy4 at 490 nm.

Alkaline phosphatase (ALP) activity assay

MC3T3-E1 cells were plated at a density of 10* cells/well
in 24-well tissue culture plates in the growth medium and
were cultured until reaching confluence, where the
medium was changed to the differentiation medium
containing 10 mM [-glycerol phosphate and 50 pg/mL as-
corbic acid (regarded as day 0). After another period of 6
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days, the medium was removed and the tissue was washed
twice with PBS. DEA lysis buffer (100 puL) was added to
each well and the plate was shook for 15 min at room
temperature. The supernatant was collected after centrifu-
ging at 1400 g rpm for 5 min (eppendorf centrifuge
5417R, Germany). Alkaline phosphatase (ALP) activity
was then assayed by a commercial kit. The sample (30 pL)
was added to 170 pL of ALP working reagents and the
mixture incubated for 5 min. The optical density at 405
nm was measured. The total cell protein was measured
by the Bradford's method [26] and the results expressed
in nanomoles of p-nitrophenol produced per min per
mg of protein.

Calcium nodule formation

MC3T3-E1 cells (10° cells/well) were seeded in 6-well
tissue culture plates in the growth medium for reaching
confluence, then continued to incubate in a differenti-
ation medium containing puerarin at 10, 10, 2 x 10
M. On day 8, the cultures in the plates were fixed with 75%
ethanol and stained for calcium with 1% Alizalin red S. The
stained samples were observed under a dissecting micro-
scope Leica DMI3009B (Germany) and photographed. The
amount of calcium deposition was quantified by destaining
with 10% cetylpyridinium chloride monohydrate in 10 mM
sodium phosphate at room temperature for 15 min. The
absorbance was measured at 562 nm.

Enzyme-linked immunosorbent assay (ELISA)

After osteogenic induction for 6 days, osteocalcin (OC)
in the supernatants was directly measured by Enzyme-
linked immunosorbent assay kit according to the
manufacturer's instructions using a microplate reader
Synergy4 (PerkinElmer, USA) at 450 nm. The assays
were performed in triplicate and the limit of detection
for these immunoassays was 4000 pg/mL according to
the manufacturer’s protocol.

Adipocyte differentiation and Oil Red O staining in 3T3-L1
cells

For adipogenesis, 3T3-L1 cells (5 x 10* cells/well) were
plated into a 6-well plate and maintained for 2 days after
reaching confluence (designated as day 0). Media were ex-
changed with differentiation medium (DMEM containing
10% EBS, 0.5 mM IBMX, 1 uM dexamethasone, 2 pg/mL
insulin, and 200 pM indomethacin) for 2 days. The cells
were then incubated in adipocyte growth medium
(DMEM supplemented with 10% FBS and 1 pg/mL insu-
lin) until day 8. Puerarin (10 and 20 uM) and vehicle
DMSO were added into the medium over the full course
of differentiation. Medium was changed every other day.
On day 8, the cells were stained with Oil Red O staining,
an indicator of cell lipid content, and digitalized by a Leica
microscope DMI3009B (Germany) for analysis.
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Measurement of intracellular triglyceride content

Cells were washed with PBS and solubilized in 5% Triton
X-100. The total triglycerides in the lysates were measured
by a commercial triglyceride assay kit, according to the
manufacturer’s protocol.

Quantitative Real-time PCR

Total RNA was isolated using the RNeasy total RNA ex-
traction kit from Axygen, following the manufacturer’s
protocol. The total RNA (500 ng) was reverse-transcribed
to cDNA by PrimeScript RT reagent Kit with oligodT pri-
mer and random 6 mers, following the manufacturer’s
protocol. The real time PCR primers used in the experi-
ments were shown in Table 1. The final reaction solution
(20 pL) contained 1 pL of the diluted cDNA product, 10
pL of 2X Power SYBR® Green PCR Master Mix, 0.8 pL
each of forward and reverse primers and 7.4 pL nuclease-
free water. The amplification conditions were: 50°C for 2
min, 95°C for 10 min, 40 cycles of 95°C for 15 sec, 60°C
for 1 min. The fluorescence signal emitted was collected
by Roche LightCycler 480 Detection System (Germany).
The mRNA levels of all genes were normalized by B-actin
as internal control. These analyses were performed in du-
plicates for each sample using cells from three different
cultures, and each experiment was repeated three times.

Western blotting

The proteins from nucleus and cytoplasm were extracted
separately by NE-PER nuclear and cytoplastic extraction
reagents kit. Cell pellets were lysed in RIPA lysis buffer
with 1% PMSEF, 1% protease inhibitor cocktail, and 1% so-
dium orthovanadate. After treatment on ice for 30 min,
cell lysates were clarified by centrifugation at 11,419 g for
30 min at 4°C to remove cell debris, and the protein con-
tent was measured by a BCA protein assay kit. Aliquots of
the lysates were subjected to 10% SDS-PAGE (with 5%
stacking gel) and transferred to a PVDF membrane. The
membrane was probed with monoclonal or polyconal
antibody (mAb) followed by horseradish peroxidase-
conjugated secondary antibodies and visualized by an ECL
advanced western blotting detection kit according to the
manufacturer’s protocol. B-actin was used as a reference
to normalize the differences in the amounts of protein
between samples.

Immunofluorescence assay

After culturing 3T3-L1 cell in differentiation medium
for 3 days, the cells fixed with 80% ethanol for 10 min,
and incubated with the PBS containing 0.5% Triton X-
100, and washed three times with PBS. Cells were incu-
bated with mouse monoclonal antibody (mAb) against
B-catenin (1: 50) for 2 h at room temperature, followed
by incubation with anti-mouse IgG Alexa 488 antibody
(1: 50) for 1 h. After washing with PBS for three times,
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Table 1 Primer sequences used for real-time PCR

Gene Forward primer Reverse primer

M-B-  TGTCCACCTTCCAGCAGATGT AGCTCAGTAACAGTCCGCCTAGA
actin

M-C/ GAACAGCAACGAGTACCGGGTA  GCCATGGCCTTGACCAAGGAG
ebpa

M- CGCTGATGCACTGCCTATGA AGAGGTCCACAGAGCTGATTCC
Ppary

M- CATGGCCAAGCCCAACAT CGCCCAGTTTGAAGGAAATC
Fabp4

M-Lpl  GGGAGT TTGGCTCCAGAGTTT  TGTGTCTTCAGGGGTCCITAG

the cells were incubated for 1 min with DAPI (0.1 pg/
mL) for nuclear staining at room temperature. Finally,
the cells were examined and photographed by a confocal
laser scanning microscope (Leica TCS SP5, Germany).

Statistical analysis

All quantitative data were presented as means + standard
deviation (SD) of three measurements. Statistical com-
parisons were performed by the SPSS 17.0 software
(Chicago, IL, USA). One-way analysis of variance
(ANOVA) followed by Tukey post-hoc test (multi-group
comparison) was used to assess statistical significance at
P<0.05.

Results

Puerarin promoted osteogenesis in osteoblast-like
MC3T3-E1 cells

MC3T3-E1 osteoblastic cells were cultured in puerarin
at various concentrations (0, 0.1, 1, 10 and 20 uM) for
48 h. As shown in Figure 2A, those treated with
puerarin promoted MC3T3-E1 osteoblastic cells prolif-
eration at concentrations of 1 (P =0.012), 10 (P =0.015)
and 20 pM (P =0.050). As shown in Figure 2B, puerarin
demonstrated a dose-dependent effect by visually deter-
mined on promoting ALP activity. It significantly in-
creased the ALP activity by 59.3% at the concentrations
of 20 pM, compared to the control group (P =0.008).
Calcium nodule formation was examined by Alizarin
Red S staining. Figure 2C and 2D show that puerarin in-
creased mineralized nodule formation in a dose-
dependent manner by visually determined, where the
maximal and significant effects were observed at a con-
centration of 20 uM (P =0.011). Compared with the
control group without osteogenic induction (ctl-), the in-
duction group (ctl+) significantly increased OC levels ex-
pression. Puerarin further increased the OC levels
expression to 36.4% at 10 pM dosage (P=0.003), and
42.2% at 20 pM dosage (P =0.004), compared with ctl+
group (Figure 2E). These results suggested that puerarin
could promote proliferation, ALP activity, mineralization
and OC protein secretion in MC3T3-E1 cells.
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The effects of puerarin on osteogenesis-related protein
expression during osteogenesis differentiation in MC3T3-
E1 cells

Runt-related transcription factor 2 (RUNX2) is a key tran-
scription factor in osteoblastic differentiation [27]. We
tested whether puerarin could stimulate osteogenesis by
modifying the expression of this transcription factor.
Osteoprotegerin (OPG) and osteopontin (OPN) required
for the differentiation of pre-osteoblasts into mature
osteoblast were also detected. As shown in Figure 2F and
2G, the protein of RUNX2 between non-induced and in-
duced group were weak, and the treatment groups with
puerarin did not significantly increase the expression of
RUNX2 at the sixth day after induction. However, signifi-
cant increases in OPG (P =0.003) and OPN (P =0.001)
protein expression were observed when compared with in-
duction group at 20 pM dosage. These results suggested
that puerarin up-regulated the expression of OPG and
OPN might contribute to osteoblastic differentiation.

The effects of puerarin on cell toxicity and BrdU
proliferation assay in 3T3-L1 cells

As shown in Figure 3A, 3T3-L1 treated with puerarin
for 48 h at the selected concentrations (0.1, 1, 10 and 20
uM) did not differ from that of the control group,
suggesting that puerarin had no toxic effects on 3T3-L1
preadipocyte cells on 0.1, 1, 10 and 20 uM. At an early
stage of differentiation, 3T3-L1 cells proceed through
two cycles of mitotic division under adipogenic differen-
tiation [28]. Postconfluent 3T3-L1 cells were cultured in
induction medium for 48 h with various doses of
puerarin (1, 10 and 20 uM) and measured BrdU at 48 h
later. As shown in Figure 3B, puerarin inhibited
postconfluent mitotic clonal expansion of 3T3-L1
preadipocytes at early stage of differentiation in a dose-
dependent manner.

The effects of puerarin on adipogenesis in 3T3-L1 cells
After adipogenic differentiation for 8 days, significantly
more lipid droplets were observed in adipocyte control
cells, as compared with the non-induced cells. However,
lipid accumulation was significantly inhibited by the treat-
ment with 10 and 20 pM puerarin in a dose-dependent
manner by visually determined (Figure 3C and 3D),
suggesting that puerarin could reduce the adipogenesis in
3T3-L1 cells.

Puerarin decreased gene and protein of expression of

adipogenic transcription and adipocyte-specific factors

During adipocyte differentiation processes, we isolated
RNA at day 2, 4, 6 and 8 and detected the changes of se-
lected genes (Figure 4). Two transcription factors,
CCAAT/enhancer-binding protein a (C/ebpa) and peroxi-
some proliferator-activated receptor y (Ppar-y) were
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(See figure on previous page.)

Figure 2 Puerarin promoted osteogenesis in osteoblast-like MC3T3-E1 cells. (A) Puerarin promoted MC3T3-E1 osteoblastic cells
proliferation. The cells were incubated with puerarin at the concentration of 0.1, 1, 10 and 20 uM for 48 hours before CCK-8 assay. DMSO was
served as control. (B) Effect of puerarin on ALP activity of MC3T3-E1 cells. MC3T3-E1 cells were cultured with vehicle or various concentrations of
puerarin for 6 days. The data are expressed as percentage of positive control (ctl+) that was induced by osteoblastic differentiation. (C) Effect of
puerarin on the mineralization of extracellular matrix by MC3T3-E1 cells. AR-S staining was performed for the demonstration of mineralized
nodule formation at days 8. (D) AS-R was then eluted from the matrix and measured by spectrophotometry at 562 nm. (E) Secreted Osteocalcin
(OCQ) levels in the media were also measured after 6-day induction. (F-G) The protein expression of RUNX2, OPN, OPG was detected by western
blot assay and quantification of immunoblots. * P < 0.05, ** P < 0.01 compared with the cells without treatment by puerarin (n = 3).
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Figure 3 Puerarin inhibites adipogenesis in 3T3-L1 cells without cell toxicity. (A) Puerarin had no toxic effect on 3T3-L1 preadipocyte cells
on the tested concentrations. (B) Puerarin inhibited postconfluent mitotic clonal expansion in 3T3-L1 preadipocytes after 48 hour treatment. (C)
Puerarin inhibited adipogenesis-induced accumulation of lipids in 3T3-L1 preadipocytes at day 8 after adipogenic induction. Representative
morphological changes of 3T3-L1 adipocyte differentiation were by Oil Red O staining. (D) Puerarin suppressed triglyceride accumulation
during adipogenesis.
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Figure 4 Puerarin inhibits adipogenesis of 3T3-L1 cells adipocyte differentiation. mRNA expression levels of (A) Ppar-y, (B) C/ebpa, (C) Lpl
and (D) Fabp4 at day 2, 4, 6 and 8 were isolated and detected. (E-F) Related proteins (PPAR-y, C/EBPa and FABP4) of adipogenesis were detected
by western blot assay and quantification of immunoblots. * P < 0.05, ** P < 0.01 compared with ctl+ that was induced by adipogenic induction

but without treatment by puerarin at the same time.

required for adipocyte differentiation process [29].
Compared to the cells without adipogenic induction,
Ppar-y rose significantly in the adipogenic stimulated
cells from day 2 after treatment, and increased sharply
at day 4 and 6, and then slowed down in the next two
days (Figure 4A). C/ebpa had a similar trend with Ppar-
y (Figure 4B). Puerarin (20 pM) significantly down-
regulated the mRNA expression of Ppar-y and C/ebpa at
each time point selected. Puerarin decreased the mRNA
expression level of Ppar-y by 39.7% at day 2 (P =0.009),
39.9% at day 4 (P=0.005), 57.5% at day 6 (P =0.006),
and 25.5% at day 8 (P =0.005), and C/ebpa by 34.1% at
day 2 (P =0.009), 48.9% at day 4 (P =0.008), 50% at day
6 (P=0.006), and 66.2% at day 8 (P =0.001), compared
with that in the adipogenic induced cells without puerarin
treatment.

The detected changes of expression of Lpl and Fabp4
confirmed that puerarin suppressed adipogenesis. Lpl and
Fabp4 rose significantly in the adipogenic stimulated cells
from day 2, reached the highest level at day 2 and day 6,
respectively. Puerarin (20 pM) significantly decreased
the Lpl mRNA level by 33.90% at day 2 (P =0.009),
37.19% at day 4 (P =0.006), 52.30% at day 6 (P =0.007),
and 42.25% at day 8 (P =0.005), while decreased Fabp4
mRNA level by 49.23% at day 2 (P =0.008), 46.38% at
day 4 (P=0.005), 50.81% at day 6 (P=0.005), and
50.41% at day 8 (P =0.001), compared with that in the
cells induced to adipogenic differentiation without
puerarin treatment (Figure 4C and D). These results sug-
gested that puerarin inhibited adipogenesis by down-
regulating expression of the adipocyte-related genes.

In Western blot analysis, the expression of adipogenic
markers, including PPAR-y, C/EBPa and FABP4, was
significantly decreased by puerarin during cell differenti-
ation (Figure 4E and 4F).

The effects of puerarin on Akt/GSK-3B/B-catenin signaling
pathway

Relatively strong expression of [B-catenin were observed
in the control groups (cytoplasm and nuclear extrac-
tion) and the protein expressions decreased significantly
in adipogenic-stimulated group (P =0.0001, P =0.004)
(Figure 5A and 5B). Two dosage (10, 20 uM) of puerarin
showed similar increased effects (10 puM, P = 0.006; 20 pM,
P =0.002) on B-catenin protein expression, suggesting that
the lowered B-catenin expression by adipocyte differenti-
ation was recovered by treatment of puerarin. The trans-
location of -catenin was observed by the confocal laser

scanning microscope, as a surrogate marker for the Wnt
pathway activation. In control group, -catenin was pre-
dominantly localized in the nucleus (Figure 5C). When
3T3-L1 cells were induced in the adipogenic-stimulated
group, the translocation of B-catenin into the cytoplasm
was observed. In both treatment groups, the immuno-
fluorescent staining [3-catenin relocated into nucleus.

The expression of phospho-GSK-3B-Ser® was signifi-
cantly increased (P =0.009) in induction group. In the
presence of puerarin, the rate of phospho-GSK-3p-Ser®/
total GSK-3p was dramatically increased (10 puM, P=
0.005; 20 pM, P =0.003) in 3T3-L1 adipocytes (Figure 5D
and 5E). As expected, the rate of phospho-AKT-Ser*”?/
total AKT was also dramatically increased (10 uM, P =
0.003; 20 pM, P=0.007) by puerarin in 3T3-L1 cells
(Figure 5C and 5E). These observations indicated that
puerarin induced the phosphorylation of AKT at serine
473 and subsequently activated the phosphorylation of
GSK-3f at serine 9, leading to GSK-3p inhibition and
Wnt/B-catenin signaling.

Discussion

The effect of puerarin on promoting the osteoblast bone
formation both in vitro and in vivo [16,30] and bone tis-
sues and bone metabolism in ovariectomized rates [31],
was reported. This study demonstrated for the first time
that puerarin promotes osteogenesis and inhibits
adipogenesis at the same time.

As the reciprocal relationship between adipogenesis and
osteogenesis in the bone marrow would lead to osteoporosis
or osseous hyperplasia [22,23], promotion of osteogenesis
and suppression of adipogenesis was thought to be an im-
portant mechanism for some anti-osteoporotic agents [32].
3T3-L1 and MC3T3-E1 cell lines were used, because they
were the most well-characterized and reliable models for
studying the differentiation and functions in vitro [33,34].

In this study, phyto-estrogen puerarin enhanced prolif-
eration and differentiation, and also increased the amount
of secreted osteocalcin in selected dosage of MC3T3-E1
cells. Meanwhile, puerarin could increase OPG and OPN
protein expression, which is consistent with the previous
data [35]. The expression profiles of RUNX2 proteins
were not significantly different among treatment, non-
induction or induction group. This might be due to the
factor that RUNX2 is an early transcription factor for
osteoblast differentiation [36], while our measurement
was carried out for RUNX2 protein at day 6 after osteo-
genic induction.
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Figure 5 The effects of puerarin on Akt/GSK-3f/B-catenin signaling pathway. (A-B) Effects of puerarin on (3-catenin protein expression in
cytoplasm and nuclear in 3T3-L1 cells. The effect of puerarin on 3-catenin was determined by western blotting. (C) Effects of puerarin on
B-catenin translocation in 3T3-L1 cells. B-catenin expression was labeled with anti-B-catenin antibody and an Alex a fluor 488-conjugated
secondary antibody (green). Magnification x 400. (D-E) The protein of AKT1, AKT1 (phosphor-Ser*’3), GSK-33 and GSK3B (phospho-Ser®) were

detected by western blot assay and quantification of immunoblots.

During the process of adipogenesis, 3T3-L1 cells
proceed through two rounds of cell division as mitotic
clonal expansion and then initiate the differentiation pro-
gram [28]. PPAR-y is the key transcription factor in adipo-
cytes differentiation and it is expressed at the highest level
in adipose tissue and adipocyte cell lines and at low levels,
or not at all, in other tissues and cell line [37]. Adipose-
specific PPAR-y knockout mice showed reduced fat
mass and protected against high fat diet-induced obesity
[38]. PPAR-y and C/EBPa synergistically activate the
downstream promoters of Lpl and Fabp4. During the
adipogenesis, puerarin inhibited adipogenesis in 3T3-L1
cells by measuring mitotic clonal expansion at early stage,
significantly suppressed PPAR-y and C/EBPa mRNA and
protein levels in the middle stage, and inhibited the
mRNA and protein levels of FABP4 in the late stage.
These results suggested that puerarin inhibited adipo-
genesis through down-regulation of PPAR-y and C/EBP«
expression.

Wnt proteins are auto-secreted from cell or adjacent
cells, and then act through cell surface receptors to deter-
mine the cell fate [39]. Wnt signaling was involved in
inhibiting adipogenesis and inducing osteoblastogenesis
[33,40,41]. In the canonical Wnt signaling pathway, Fzd
signaled through Dishevelled to inhibit the kinase activity
of a complex containing glycogen synthase kinase 3
(GSK3), Axin, B-catenin and Adenomatous polyposis coli
(APC) [39]. This inhibition facilitated cytosolic -catenin
to accumulate and translocate to the nucleus, where it
bounded the TCF/LEF family of transcription factors to
regulate the expression of Wnt target genes, such as
Runx2, PPAR-y and C/EBPq, promoting osteogenesis and
inhibiting adipogenesis [42-44]. When Wnt signaling was
suppressed, this complex targeted -catenin for phosphor-
ylation to rapid degradation [45]. The protein expression
of B-catenin significantly suppressed in adipocyte differ-
entiation group in both cytoplasm and nucleus, while
the treatment group with puerarin increased the protein
expression in a dose-dependent manner, suggesting that
puerarin could increase p-catenin protein expression to
inhibit adipocyte differentiation. Fluorescent immuno-
staining showed that puerarin kept p-catenin protein
stay in nuclear in comparison with the induced group.
These results confirmed that puerarin exhibited anti-
adipogenesis activity probably through the canonical
Wnt/B-catenin signaling pathway, which might also fa-
cilitate the effect of puerarin on osteogenesis [46].

Wnt/B-catenin and PI3K/Akt/GSK-3p signaling pathway
were cross-talked by GSK-3p and p-catenin [47]. In the
PI3K/Akt/GSK-3p signaling pathway, Akt regulated
adipogenesis via the phosphorylation and inactivation of
substrates, such as GSK-3B, which directly regulated -
catenin. GSK3p is also a component of the canonical Wnt
signaling pathway, controling the activity of B-catenin in
the context of a multimolecular complex, e.g, adenoma-
tous polyposis coli (APC) and axin. Thus, activation of
Akt is important for anti-adipogenesis, which would ac-
tivate PPAR-y and C/EBPa during 3T3-L1 adipocyte
differentiation [48,49]. Puerarin increased the rate of
phospho-AKT-Ser*”?/total AKT, and phospho-GSK-3p-
Ser’/total GSK-3p in a dose-dependent manner, which
might lead to the cytosolic B-catenin to accumulate and
translocate to the nucleus and activation of Wnt/fB-
catenin signaling pathway.

Isoflavones are structurally similar to estrogen and has
estrogen-like activity that is mediated through estrogen re-
ceptors (ER) [17]. Estradiol could induce the association of
estrogen receptor o (ERa) with insulin-like growth factor-
1 (IGF-I) receptor (IGF-IR) and activates the PI3K/Akt/
GSK3p signaling pathway [50]. Similar to estrodiol,
puerarin was also reported to activate ER-dependent
PI3K/Akt pathway in the endothelial cells [17], and it
might lead the following action of puerarin: increasing the
amount of active Akt (ser-473 phosphorylate), GSK3p
(ser-9 phosphorylate) and stabilizing and accumulating
[-catenin in nucleus, which might result in the dual effects
of puerarin on promoting osteogeneis and suppressing
adiopogenesis. Puerarin improved insulin sensitivity and
deceased total cholesterol in serum from rats fed a high-
fat diet [51,52], and markedly improved insulin resistance
of 3T3-L1 lipocyte by suppressed PPAR-y mRNA expres-
sion and promoted Glut-4 transposition to cell membrane
to increase the transportation of glucose [53].

In postmenopausal osteoporosis, the decreased number
of osteoblasts may be due to increased differentiation of
the BMSCs to the adipogenic lineage. Puerarin indeed
promoted nuclear translocation of B-catenin, which might
play an important role in promotion of osteogenesis and
inhibition of adipogenesis.

Conclusion

Puerarin promoted osteogenesis and inhibited adipo-
genesis in vitro, and Akt/GSK-3[3/B-catenin signaling path-
way was involved in the suppression of adipogenesis.
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