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Boswellic acids extract attenuates pulmonary
fibrosis induced by bleomycin and oxidative
stress from gamma irradiation in rats
Eman Noaman Ali and Somaya Zakaria Mansour*

Abstract

Background: Interstitial pulmonary fibrosis is characterized by an altered cellular composition of the alveolar
region with excessive deposition of collagen. Lung inflammation is also common in pulmonary fibrosis. This study
aims to test the inhibition of 5-lipooxygenase (5-LOX) by boswellic acid (BA) extract in an experimental model of
pulmonary fibrosis using bleomycin (BL).

Methods: Boswellic acid extract (1 g/kg) was force-fed to rats seven days prior to administration of BL or gamma
irradiation or both. BL (0.15 U/rat) in 25 μl of 0.9% normal saline (NS) or 0.9% NS alone was administered
intratracheally. Rats were exposed to two fractionated doses of gamma irradiation (0.5 Gy/dose/week) with a
gamma cell-40 (Cesium-137 irradiation units, Canada) during the last two weeks of the experiment. BA was
administered during BL or irradiation treatment or both. After the animals were sacrificed, bronchoalveolar lavage
was performed; lungs were weighed and processed separately for biochemical and histological studies.

Results: In rats treated with BL, levels of transforming growth factor-b1 (TGF-b1) and tumor necrosis factor-a (TNF-
a) were significantly elevated (P = 0.05 and P = 0.005). Hydroxyproline was highly and extensively expressed.
Immunoreactive compounds were abundantly expressed, represented in the levels of macrophages infiltrate,
accumulation of eosinophils and neutrophils in the lung as well as the aggregation of fibroblasts in the fibrotic
area. The levels of lipoxygenase enzyme activity were significantly increased (P = 0.005). Antioxidant activities
measured in BL-treated rats deteriorated, coupled with the elevation of both levels of plasma lipid peroxide (LP)
content and bronchoalveolar lavage lactate dehydrogenase activity. BA-treated rats had reduced number of
macrophages, (P = 0.01), neutrophils in bronchoalveolar lavage (P = 0.01) and protein (P = 0.0001). Moreover, the
hydroxyproline content was significantly lowered in BA-treated rats (P = 0.005). BA extract inhibited the TGF-ß
induced fibrosis (P = 0.01) and 5-LOX activity levels (P = 0.005).
Histologically, BA reduced the number of infiltrating cells, ameliorated the destruction of lung architecture and
attenuated lung fibrosis.

Conclusion: BA attenuates the BL-induced injury response in rats, such as collagen accumulation, airway
dysfunction and injury. This study suggests that the blocking of 5-LOX may prevent the progression of fibrosis.

Background
There is no effective treatment to prevent or reverse
lung fibrosis, the process of which is poorly understood
[1]. Idiopathic pulmonary fibrosis (IPF) is one of the
most common chronic interstitial lung diseases with a
mortality rate of up to 70% five years after diagnosis;

most therapeutic strategies have been based on eliminat-
ing or suppressing the inflammatory component without
evidence of efficacy [2]. A recent clinical trial of long-
term treatment with IFN-1b on IPF found some effects
on mortality; however, no impact on the process of
fibrogenesis was observed [3].
Transforming growth factor ß1 (TGF-ß1), among a

series of cytokines and chemokines, has been related to
the initiation and progression of fibrosis [4,5]. TGF-ß1
promotes myofibroblast proliferation, induces the
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synthesis of extracellular matrix (ECM) proteins and
inhibits ECM degradation by inducing antiproteinases or
reducing metalloproteases [6]. Transient (7-10 days)
overexpression of active TGF-ß1 by adenoviral vector
gene transfection in rat lungs induces a severe and pro-
gressive fibrosis [7]. Moreover, the blocking of TGF-ß1
in animal models, such as with the use of soluble type II
receptors for TGF-ß1 [8], may be effective in reducing
fibrosis.
Inflammatory cytokines play an important role in the

initiation and perpetuation of the fibrotic process.
Tumor necrosis factor (TNF)-a is a proinflammatory
cytokine with many biological properties [9] and is criti-
cal in the development of pulmonary fibrosis [10]. Anti-
TNF-a antibody attenuates BL-induced pulmonary
fibrosis in mice [11]. In addition, a soluble receptor for
TNF-a alleviates BL-induced pulmonary fibrosis [12].
TNF-a receptor knockout mice are protected against

pulmonary fibrosis caused by silica, BL and asbestos
[13-15]. Thus, TNF-a in conjunction with BL may
accentuate the fibrotic process. Since TNF-a overex-
pression alone does not induce pulmonary fibrosis [16],
TNF-a overexpression may sensitize the rats to fibrotic
agents. Pulmonary fibrosis can be induced in rats by
several means including BL, herpes virus (an adenovirus)
expressing TGF-b1, silica, asbestos, butylated hydroxyto-
luene and oxygen or irradiation. BL, which is a che-
motherapeutic drug used to treat cancer and can cause
pulmonary fibrosis as a complication, has been used in
research to induce pulmonary fibrosis in mice and rats
and produce an oxidative injury resulting in DNA
damage and the destruction of alveolar epithelial cells
[11]. In addition, another type of fibrotic agent, namely
radiation exposure, can directly produce oxidant injury
and DNA damage [17]. TGF-b1 is a well known stimu-
lant of extracellular matrix production by fibroblasts
and has been suggested to play an important role in the
development of pulmonary fibrosis [18,19].
The gum resin of Boswellia serrata, a kind of decid-

uous tree found in parts of China and India has long
been used for treating inflammatory and arthritic dis-
eases [20]. Boswellic acids (BA), which are pentacyclic
triterpenic acids, found in the gum resin of the tree are
responsible for its anti-inflammatory properties [21,22].
Suppression of leukotriene synthesis via inhibiting 5-
lipoxygenase is considered the main mechanism under-
lying their anti-inflammatory effects. BAs are specific,
non-redox inhibitors of 5-lipoxygenase as they do not
affect 12-lipoxygenase and cyclooxygenase (COx) activ-
ities [22-24]. Moreover, BA inhibit leukocyte elastase for
anti-inflammation [25,26].
Pulmonary fibrosis is a debilitating condition for

which there is no effective therapy and patients’ prog-
nosis is poor [27]. Treatment of pulmonary fibrosis has

been based primarily on anti-inflammatory and immu-
nosuppressive therapies with very limited success [28].
As such, new therapeutic strategies are much needed.
BA fraction is an agent with demonstrated anti-fibrotic
activity in several organs in animals, including the lung
[29]. A phase II clinical study shows BA to be a promis-
ing treatment for idiopathic pulmonary fibrosis [30]. BA
may be beneficial for a range of fibrotic conditions
through both anti-inflammatory and anti-fibrotic
mechanisms. Although the routes of exposure differ
between the intratracheal rats’ model and systemic
delivery to the lung as occurs in humans with BL lung
toxicity, the resulting patchy interstitial fibrosis is similar
in the two situations [31].
TGF-ß1 may be a key growth factor in the initiation

of fibrosis [32]. Overexpression of TGF-ß1 by adminis-
tering BL to rats induces potent and progressive pul-
monary fibrosis [33]. It is possible to decrease BL-
induced lung fibrosis by inhibiting TGF-ß1 type II
receptor [34] or TGF-ß1 neutralizing antibodies [35], or
inhibiting TGF-ß pathways, through a negative regulator
of TGF-ß1 signaling [36]. Therefore, therapeutic strate-
gies to inhibit TGF-ß1 by interfering with the receptor
signaling process appear to be the right intervention to
prevent the initiation of fibrosis.
However, BA may target the parenchymal cells that

respond to TGF-ß1. BA are specific and potent inhibi-
tors of TGF-ß1 signaling in vivo [37]. Moreover, preli-
minary investigations with this extract show
considerable attenuation of BL-induced lung fibrosis
when administered simultaneously with BL [38].
Tumor necrosis factor alpha (TNF-a) is important in

the development of pulmonary fibrosis. Since chronic
overexpression of TNF-a alone did not produce pul-
monary fibrosis, we hypothesized that chronic overex-
pression of TNF-a might make the lungs more
susceptible to BL or TGF-b1 [39].
While TNF-a is reported to be a major cytokine for

the development of pulmonary fibrosis, recent studies
show that TNF-a both induces and protects against dis-
ease processes [40]. Kuroki et al. demonstrates that
TNF-a lessened pulmonary inflammation in TNF-defi-
cient mice by inducing apoptosis of infiltrating inflam-
matory cells [41]. With respect to pathogenesis of lung
diseases, TNF-a may be responsible for several lung dis-
eases such as pulmonary fibrosis, acute lung injury and
pulmonary emphysema [42-44].
The inflammation major component in the pathogen-

esis of interstitial lung disease that is orchestrated in
part by endogenous and migrating leukocytes [45].
These leukocytes together with lung epithelial and
endothelial cells create a feedback loop where stimuli
from injury responses can activate alveolar and intersti-
tial macrophages [46]. This study aims to test the
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inhibiton of 5-LOX by BA extracts in an experimental
model of pulmonary fibrosis using BL.

Methods
Materials and instrument
The oleogum resin of Boswellia carterii Birdwood (Bur-
searceae) was purchased from a local market. All chemi-
cals and reagents used in the experiment were of
analytical grade and purchased from Merck (Germany)
and Sigma Aldrich Chemie (Germany). Assay kits for
testing TGF-b1 and TNF-a ELISA were purchased from
Dynatech Laboratories (USA), assay kit of 5-lipooxygen-
ase activity from Cayman Chemical Company (USA)
and lactate dehydrogenase (LDH) activity kit from
Sigma Aldrich Chemie (Germany).

Experimental animals
Male Swiss albino rats (100-110 g) were obtained from
the Egyptian Organization for Biological Product and
Vaccines in Giza, Egypt and were used throughout the
present experiments. The animals were housed in cages
in a climate-controlled room with 55% of humidity at
25°C and a 12-hour light/dark cycle. Rats were fed on
standard pellets of rat diet (PMI Feeds, Egypt) and
water ad libitum. The animals were allowed to acclima-
tize to the environmental conditions for one week
before experiments. All animal handling procedures
were approved by the Ethics Committee of the National
Centre for Radiation Research and Technology, Atomic
Energy authority, Cairo, Egypt and in accordance with
the recommendations for the proper care and use of
laboratory animals (NIH publication No.85-23, revised
1985).

Gamma radiation procedure
Irradiation of animals was carried out at the National
Centre for Radiation Research and Technology
(NCRRT) in Cairo, Egypt, with a gamma cell-40
(Cesium-137 irradiation units, Canada). The irradiation
dose rate was 0.61 Gy/minute. Animals (whole body)
were exposed to two fractionated doses (0.5 Gy/dose/
week) during the final two weeks of the experiments.

Induction of lung fibrosis
To induce pulmonary fibrosis, we treated the rats with
0.15 U BL in 25 μl 0.9% normal saline (NS) or 0.9% NS
alone via intratracheal administration according to the
method described by Cortijo et al. [47].

Preparation of boswellic acid (BA) fraction
The oleo gum resin (1 kg) was extracted with methylene
chloride (5 L). The extract was concentrated under
reduced pressure to yield 250 g of semisolid oleoresin.
The extract was then further fractionated. Briefly, the

semisolid oleoresin was dissolved in petroleum ether
and the soluble fraction was discarded (95%) and non-
soluble fraction (terpenoid portion) (5%) was re-dis-
solved in methanol and applied on a thin layer chroma-
tography (TLC) with a solvent system of chloroform
and methanol (9:1). The TLC showed four bands of BA
fractions, consistent with the report by Badria et al.
[48]. The fractionation of the oleogum resin of Boswellia
resulted in the isolation and identification of nine com-
pounds, namely palmitic acid and eight triterpenoids
belonging to lupane, ursane, oleanane and tirucallane
skeleta isolated from the resin. These triterpenoids are
lupeol, beta-boswellic acid, 11-keto-beta-boswellic acid,
acetyl beta-boswellic acid, acetyl 11-keto-beta-boswellic
acid, acetyl-alpha-boswellic acid, 3-oxo-tirucallic acid
and 3-hydroxy-tirucallic acid. Rats were orally admini-
strated with the BA fraction (1 g/kg body weight/day)
dissolved in distilled water for 28 days starting from
seven days before the BL instillation.

Animal groups
The experimental animals were divided into eight
groups (n = 10), namely (1) Control: healthy animals
receiving saline; (2) BA: animals receiving the BA frac-
tion; (3) IR: animals exposed to g irradiation; (4) BA +
IR: animals receiving the BA fraction and exposed to g
irradiation; (5) BL: animals injected with BL; (6) BA +
BL: animals receiving the BA fraction and injected with
BL; (7) BL +IR: animals injected with BL and exposed to
g irradiation; (8) BA + BL+ g irradiation: animals receiv-
ing the BA fraction and injected with BL and exposed
to g irradiation. Rats of all groups received the last irra-
diation exposure on the day prior to overnight fasting
and sacrifice. Blood samples were collected by heart
puncture. Plasma of each blood sample was separated
and kept frozen for biochemical assays. Bronchoalveolar
lavage was performed and lungs were weighed and pro-
cessed separately for biochemical and histological stu-
dies. Lung samples were kept at -80°C until biochemical
assays.

Biochemical assays
Bronchoalveolar lavage
For the determination of inflammation following BL
administration, each animal was killed with diethyl
ether; lungs and trachea were removed. Two successive
5.0 ml aliquots of warm (37°C) phosphate-buffered sal-
ine (PBS, pH7.4) were infused and slowly withdrawn
from the lungs through a cannula inserted into the tra-
chea. Recovered bronchoalveolar lavage fluid (BALF)
volumes routinely measured between 8.0 and 9.0 ml.
BALF were centrifuged at 1000×g for 10 minutes
(Janetzki, Model T30, Germany) at 4°C, after which the
supernatants were removed and saved for assays of
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lactate dehydrogenase (LDH) and protein content. The
cell pellets were resuspended in PBS and total cell
counts were determined on a hemocytometer. Concur-
rently, alveolar macrophage viabilities were assessed by
trypan blue exclusion. Furthermore, BALF cell samples
were centrifuged and stained with Wright’s stain and
differential cell counts determined under a light micro-
scope by counting 300 to 400 cells per animal. Absolute
cell numbers were log10 transformed for data analysis
and presentation according to methods by Cortijo et al.
[47]. LDH activities of the BALF supernatants were
determined with a commercially available kit. BALF pro-
tein content was determined according to the method of
Lowry et al. [49], with bovine serum albumin (BSA) as
the standard.
TGF-b and TNF-a ELISA
Rat’s anti-human TGF-b (catalog number, SMB100B) or
TNF-a (catalog number, RTA00) monoclonal capture
antibody and biotinylated detecting antibody pairs were
obtained from R&D Systems (USA). ELISA was per-
formed based on a horseradish peroxidase method
described previously [50,51]. Optical density of each
sample after color development was determined with a
microplate reader at 450 nm.
Determination of 5-lipoxygenase activity in lung tissue
Lung tissues were homogenized with lysis buffer to give
50% lung lysates. Extensive dialysis (1 week) was per-
formed on sample lysates with Tris buffer pH7.4 as dia-
lysis buffer. Lipoxygenase activity was measured with an
enzymatic colorimetric method described by Gaffney
[52] using a diagnostic lipoxygenase inhibitor screening
assay kit (Cayman Chemical Company, USA).
Hydroxyproline assay
Hydroxyproline is a modified amino acid abundant in
collagen. The hydroxyproline content of the lungs was
determined as a quantitative measure of collagen
deposition. One half milliliter (0.5 ml) of lung homoge-
nate was digested in 1 ml of 6N HCl for 12 hours at
110°C. Aliquots (5 μl) were then assayed with chlora-
mine-T solution followed by development with the
Erlich’s reagent at 65°C for 15 minutes as previously
described [53]. Absorbance was measured at 550 nm;
the amount of hydroxyproline was determined against a
standard curve generated with known concentrations of
hydroxyproline standard.
Antioxidant activities and lipid peroxidation content
Lipid peroxide concentrations were determined by mea-
suring the Malondialdahyde (MDA) end product con-
tent in plasma according to the method of Yoshioka et
al. [54]. Reduced glutathione (GSH) estimated in the
whole blood as yellow color which developed when 5, 5
dithiol-bis (2-nitrobenzoic acid) was added to sulfhydryl
compounds according to the method described by Beu-
tler et al. [55]. A Glutathione peroxidase (GSH-Px)

activity level was assayed as described by Pigeolot et al.
[56]. Superoxide dismutase (SOD) activity levels in the
whole blood were estimated by detecting superoxide
anions using nitroblue tetrazoluim formazan color
development according to Minami and Yoshikawa [57].
Catalase (CAT) activity was determined according to
Sinha [58].
Histological examination
The lungs were removed, inflated at 25 cm pressure
with PBS then fixed, embedded in paraffin, sectioned
and stained with hematoxylin and eosin [59]. Slides sec-
tions were examined under a light microscope.
Statistical analysis
SPSS (version 15) was used in data analysis. Data were
analyzed with one-way analysis of variance (ANOVA)
followed by a post hoc test (LSD alpha) for multiple
comparisons. The data were expressed as mean ± stan-
dard deviation (SD). P values < 0.05 were considered
statistically significant.

Results and Discussion
Effect of BA treatment on the BALF measurements in rats
with lung fibrosis
Analysis of BALF in BL group without BA treatment
revealed a severe inflammatory response characterized by
infiltration of total cell count (neutrophils, eosinophils
and other cell types) along with increases of LDH activ-
ities, protein content and lung collagen accumulation.
These events are indicative of airway and/or alveolar cell
damage (Table 1, 2). With the exception of the influx of
eosinophils and other types of cells, BA extract fraction
had promising effects on these inflammatory parameters.
The anti-fibrotic action of BA may attenuate the events
following the initial cell damage and the acute inflamma-
tory phase of lung injury [60]. The present study also
observed that the inflammatory responses following BL
administration were attenuated by BA administration. An
increased eosinophil number in BALF was reported fol-
lowing intratracheal BL administration, suggesting an
immunological component of BL-induced pulmonary
toxicity as stated by Ammon [61].

Effect of BA administration on the levels of TGF-b in rats
with lung fibrosis
Figure 1 shows that after intratracheal administration of
BL the expression of TGF-ß1 was detected in high con-
centration and that BA blocked early fibrosis-related
gene expression. BA administration dramatically
decreased the amount of TGF-ß1-induced fibrosis
observed on day 28. These findings are consistent with
some previous studies [62-64] in which TGF-ß1 is also
strongly associated with later stages of chronic and pro-
gressive fibrotic diseases, such as IPF [62]; TGF-ß1
auto-induction plays a part in this ongoing process [63];
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and TGF-ß1 is increased in the development and the
progression of radiation-induced fibrosis [64].

Effect of BA administration on the levels of TNF-a in rat
with lung fibrosis
Chronic overexpression of TNF-a enhanced the fibrogenic
effects of BL (Figure 2). The chronic overexpression of
TNF-a may be one of the factors of pulmonary fibrosis via
modifying the immunologic reaction, increasing prostaglan-
din E2 (PGE2) production [39], activating matrix metallo-
proteinases (MMPs) or down-regulating TNF-a receptors
[16]. This study strongly suggests that TNF-a can stimulate
the development of pulmonary fibrosis. Down regulation of
the TNF receptor 1 (TNFRI) reduced apoptosis induced by
TNF-a, which may account for the accumulation of inflam-
matory cells (Figures 3 and 4) but may also decrease

apoptosis of epithelial cells which are necessary for alveolar
repair [65]. TNF-a also induces the production of PGE2
[66] which inhibits fibroblast proliferation [67].

Effect of BA treatment on the histopathological findings
In the present study, the histopathological examination
showed no chronic inflammation in the rat lungs. In
addition, the presence of air space enlargement was
observed resulting from loss or rupture of alveolar
septa. However, by staining with hematoxylin and eosin
stain, we found patches of fibrosis, which was in agree-
ment with previous investigations [68,69]; the increase
in hydroxyproline per lung agreed with another previous
study [69]. Lung of normal rats treated with BA and or
radiation exposure did not display significant differences
as compared with normal animal lungs (Figures 3a, b, c
and 3d). Twenty-eight days after BL instillation, rat
lungs developed patchy areas of inflammation and fibro-
sis throughout the lung parenchyma (Figures 4a and
4b). The severity and extent of the inflammatory
response to BL showed that the inflammatory process in
rat lungs were characterized by an accumulation of neu-
trophils and lymphocytes (Figure 4a) and a predomi-
nance of lymphocytes and macrophages with few
polymorphonuclear cells, as well as severe changes. His-
tological examination showed increased wall thickness
of the pulmonary arteries (Figure 4b). Rat lungs exposed
to both BL and irradiation (BL+IR) showed diffuse,
heavy infiltration of inflammatory cells and cystic
changes (Figures 4c and 4d). Lung of a BA+BL treated
group rats received repeated high dose of BA seven days
before intratracheal instillation of BL to the end of the
experimental phase of the study showed thin interalveo-
lar septa, a lack of inflamed cells and normal-appearing
bronchioles and alveolar ducts (Figures 4e and 4f). His-
topathological examination in the group of rats receiving
BA+BL+IR showed fewer fibrotic lesions and local infil-
trations of inflammatory cells (Figures 4g and 4h).

Effect of BA administration on the activity levels of 5-LOX
in lung of rats bearing fibrosis
Animals subjected to BL had higher pulmonary 5-LOX
(Figure 5). Figures 1, 2 and 5 demonstrate that BA,
administered orally, inhibited the TGF-ß1 and TNF-a as
well as the activity level of 5-LOX enzymes. 5-LOX was
suggested to be a target of BA [70,21]; and leukotrienes
(LT) are potent mediators of inflammation; thus, sup-
pression of LT formation by BA may be the underlying
mechanism of the anti-inflammatory actions of BA.

Effect of BA administration on the antioxidant status in
rats with lung fibrosis
BA have been successfully used to prevent injury
responses in activated macrophages [71] and are

Table 1 BALF measurements following intratracheal in
rat after different treatment conditions

Groups LDH(U/l) Protein (μg/ml)

Control 20.3 ± 1.04 81.4 ± 18.38

b 0.005 0.05

c 0.01 0.0001

BA 22.5 ± 3.64 99.6 ± 11.95

a 0.01 NS

b 0.0001 NS

c 0.01 0.0001

IR 28.3 ± 4.50 163.3 ± 32.22

a NS 0.005

c NS 0.05

BA+IR 38.1 ± 7.62 109.2 ± 15.59

a 0.05 NS

b NS NS

c NS 0.0005

BL 137.2 ± 68.94 424.5 ± 32.91

a NS 0.0001

b NS 0.005

BA+BL 41.2 ± 5.37 150.3 ± 20.61

a 0.025 0.05

b NS NS

c NS 0.005

BL+IR 155.5 ± 67.90 411.2 ± 27.37

a NS 0.0001

b NS 0.005

c NS NS

BA+BL+IR 43.7 ± 7.79 201 ± 22.17

a 0.05 0.01

b NS NS

c NS 0.005

Each value represents mean ± SD.

a: Significant difference from Control

b: Significant difference from Irradiation group (IR)

c: Significant difference from BL group (BL)

NS: no significance
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effective agents in preventing oxidant-induced injury
responses [72]. Activated leukocytes can release reactive
oxygen and nitrogen species (superoxide, hydrogen per-
oxide, hydroxyl radical, hypochlorous acid, nitric oxide
and peroxynitrite) and proteases that sustain the injury/
repair processes thought to contribute to the fibrotic
processes [73]. BA scavenged a broad spectrum of reac-
tive oxygen and nitrogen species (Tables 3, 4 and 5).
This scenario suggests an approach to breaking the
feedback loop by using catalytic antioxidants BA.

Effect of radiation exposure on the BALF measurements
and TGF-b1 and TNF-a in rats with lung fibrosis
Sublethal and lethal lung irradiation can trigger a
number of genetic and molecular events that can have
both short-term effects and longer-term effects [74].

Some more immediate effects include recruitment of
inflammatory cells to lung, up-regulation of adhesion
molecules, induction of oxidative injury and generation
of a number of pro-inflammatory cytokines and che-
mokines, notably TNF-a [75-79]. The present study
demonstrates the effect of radiation exposure on the
lung syndrome of fibrosis formation (Table 1, 2). Sur-
prisingly, lung irradiation had no significant changes in
LDH activity level, total protein, neutrophils and eosi-
nophils while macrophages viability percentage
recorded P < 0.05 on levels of inflammatory cells or
acute inflammatory mediators measured in BALF of
BL exposed animals. Radiation pneumonitis and subse-
quent lung fibrosis in rats were not detectable with the
radiation dose given in this study (0.5 Gy/week for two
week). Nonetheless, the capacity of the lung to mount

Table 2 BALF measurements following intratracheal in rat after different treatment conditions

Groups Differential cell count (log10)

Total cell count (log10) Macrophages Neutrophils Eosinophils Macrophage viability (%)

Control 7.92 ± 0.55 7.56 ± 0.017 6.56 ± 0.83 6.06 ± 0.71 76.5 ± 1.21

b NS NS 0.05 NS 0.01

c 0.001 0.005 0.025 0.05 0.01

BA 7.74 ± 0.35 7.65 ± 0.052 5.90 ± 0.69 5.76 ± 0.16 77.0 ± 0.35

a NS NS NS NS NS

b 0.0001 0.05 0.01 0.01 0.005

c 0.0001 0.01 0.01 0.01 0.01

IR 8.54 ± 0.104 7.46 ± 0.139 8.34 ± 0.21 6.46 ± 0.09 87.5 ± 2.25

a NS NS NS NS NS

c 0.0001 0.005 0.05 0.025 0.025

BA+IR 8.65 ± 0.398 7.52 ± 0.069 8.51 ± 0.42 6.57 ± 0.35 81.4 ± 2.77

a NS NS NS NS 0.005

b NS NS NS NS NS

c 0.0001 0.005 NS 0.05 0.025

BL 19.72 ± 0.346 9.93 ± 0.502 9.58 ± 0.42 8.18 ± 0.55 112.4 ± 8.31

a 0.0001 0.005 0.025 0.05 NS

b 0.0001 0.0001 0.05 0.025 0.025

BA+BL 8.6 ± 0.520 7.72 ± 0.191 9.95 ± 0.21 8.65 ± 0.40 79.7 ± 5.54

a NS NS 0.01 0.025 0.01

b NS NS 0.005 0.005 NS

c 0.0001 0.01 NS NS 0.025

BL+IR 9.67 ± 0.346 7.50 ± 0.104 9.50 ± 0.47 7.57 ± 0.38 89.7 ± 4.16

a 0.05 NS 0.025 NS NS

b NS NS 0.05 0.025 NS

c 0.0001 0.005 NS NS 0.05

BA+BL+IR 8.95 ± 0.156 7.82 ± 0.156 8.75 ± 0.40 7.65 ± 0.55 83.5 ± 7.97

a NS NS 0.05 NS 0.025

b NS 0.0001 NS 0.05 NS

c 0.0001 0.01 NS NS 0.05

Each value represents mean ± SD.

a: Significant difference from Control

b: Significant difference from Irradiation group (IR)

c: Significant difference from BL group (BL)

NS: no significance
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Figure 1 Transforming growth factor concentration in lung tissue under different treatments conditions. Each value represents the mean
± SD of 3 replicates. a: Significant difference from Control P = 0.05, 0.005 and 0.05 respectively. b: Significant difference from Irradiation group
(IR) P = 0.025 and 0.025 respectively. c: Significant difference from BL group (BL) P = 0.005, 0.005, 0.025, 0.025, 0.01 and 0.0001 respectively.

Figure 2 Tumor necrosis factor-a concentration in lung of animals under different treatment conditions. Each value represents the mean
± SD of 3 replicates. a: Significant difference from Control P = 0.005 and 0.01 respectively. b: Significant difference from Irradiation group (IR) P =
0.01, 0.005, 0.005, 0.025 and 0.025. c: Significant difference from BL group (BL) P = 0.005, 0.0005, 0.005, 0.0005, 0.005 and 0.005 respectively.
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Figure 3 Histopathological examination for lung in different groups (H&E X200). 5a control group. 5b BA group. 5c IR group. 5d BA + IR
group.

Figure 4 Histopathological examination for lung in different groups (H&E X200). 6a & 6b BL group. 6c & 6d BL + IR group. 6e & 6f BA+BL
group. 6g & 6h BA+ BL+ IR group.
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both acute inflammatory and subsequent fibrotic
responses was diminished. Our results (Table 1, 2)
suggest that inflammatory cells, a significant source of
the measured inflammatory mediators, had appropriate
basal function at the early time points in this study.
However, the response to BL administration was signif-
icantly altered in rats. The mechanism for these effects
is not clear.

Effect of radiation exposure on the antioxidant status in
rats with lung fibrosis
Oxidative stress and inflammation are related. In the
initial inflammation, immune cells migrate to inflamma-
tory sites and release various proinflammatory cytokines
that function in a coordinative manner to commence an
inflammatory cascade and resolve this acute inflamma-
tion [80]. The aberrations in the apoptosis and phagocy-
tosis of in situ inflammatory cells may lead to an
unresolved chronic inflammation [81]. In a setting of
chronic inflammation, the persistent tissue damage and
cell proliferation are associated with excessive of reactive
oxygen and nitrogen species [82].
In the present study, fibrosis in rat lungs induced sig-

nificant deleterious changes in antioxidant status with
or without whole body irradiation. The results recorded
a significant increase in lipid peroxidation level, a
marked depletion in GSH content and decline in SOD

and GSH-Px activity in both the blood and lung tissues
of the animals treated with BA.

Possible role of BA treatment for augmentation and
regulation of antioxidant status
5-LOX must co-localize with 5-LOX activating protein
and cytosolic phospholipase A2 then redistribute to
the nuclear membrane to perform its action [83]. It
plays a central role in cellular leukotriene synthesis.
5LO converts arachidonic acid, released from the
membranes by phospholipase A2, into 5(S)-hydroper-
oxy-6, 8, 11, 14-eicosatetraenoic acid (5-HPETE), and
subsequently into the epoxide intermediate leukotriene
A4 (LTA4). Hydrolysis of LTA4 by LTA4 hydrolase
leads to the formation of the potent neutrophil che-
moattractant LTB4, whereas conjugation of LTA4 with
glutathione through the action of LTC4 synthase yields
LTC4, which then is sequentially degraded into LTD4
and LTE4. The cysteinyl- leukotrienes, which consti-
tute slow-reacting substance of anaphylaxis, are known
to contract airway smooth muscle, increase vascular
permeability, and promote mucus secretion. Werz [84]
suggested that 5-LOX activity was regulated by both
cellular redox tone and enzyme phosphorylation which
could affect its redistribution. Thus, 5-LOX inhibitors
such as BA may act on either redox mechanism or
enzyme distribution.

Figure 5 5-Lipoxygenase activity levels in lung tissue of animals under different treatments conditions. Each value represents the mean
± SD of 3 replicates. a: Significant difference from Control P = 0.0005 and 0.05 respectively. b: Significant difference from Irradiation group (IR) P
= 0.0005. c: Significant difference from BL group (BL) P = 0.005, 0.005, 0.005, 0.005, 0.005 and 0.005 respectively.
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A balance between oxidants and antioxidants is a pre-
requisite for normal lung homeostasis. Induction of
these antioxidant enzymes and related proteins after
pulmonary insults may protect the lung and promote
normal repair. These enzymes include SOD, catalase
and glutamate content, the rate-limiting enzyme in glu-
tathione synthesis [85]. The primary antioxidant
enzymes in the extracellular matrix and alveolar lining
fluid that may inhibit oxidative activation are extracellu-
lar glutathione peroxidase [86] and SOD [87]. Table 3, 4
shows the augmentation of the levels of glutathione
level, SOD and catalase activity in the blood and lung of
the fibrotic rat with BA treatment. The role of BA in

amelioration of TGF-ß1 experrsion may be the route of
BA to modulate the antioxidant status. TGF-ß1 has the
main role in fibrosis in lung diseases. TGF-ß1 stimulates
accumulation of extracellular matrix through increased
transcription of collagen mRNA [88], thereby leading to
the accumulation of collagen content represented by the
increase of the levels of 5-hydroxyproline concentration
as a quantitative measure of collagen deposition (Figure
6). Thus, consistently elevated levels of TGF-ß1 in the
lung may serve as a stimulus for myofibroblast activa-
tion and production of extracellular matrix.
There are several potential interactions between TGF-

ß1 and oxidants/antioxidants in the lung. For example,

Table 3 Reduced glutathione concentration and glutathione perosidase activity in RBCs compacted cells and lung
tissue homogenate in rat after different treatment conditions

Parameters Groups GSH GSH-Px

Blood
(mg/dl packed RBCs)

Lung
(μg/g tissue)

Blood
(μg oxidized GSH/

min/ml packed RBCs)

Lung
(μg oxidized GSH/

min/g tissue)

Control 188.00 ± 8.35 206.1 ± 4.20 272.52 ± 12.41 465.6 ± 35.83

b NS NS NS NS

c P = 0.0001 P = 0.0001 P = 0.0001 P = 0.001

BA 238.91 ± 23.48 199.3 ± 4.93 281.78 ± 19.89 441.8 ± 52.42

a P = 0.0001 NS NS NS

b P = 0.0001 NS NS NS

c P = 0.0001 P = 0.0001 P = 0.0001 P = 0.004

IR 175.03 ± 45.50 202.4 ± 4.48 293.93 ± 15.70 416.8 ± 19.32

a NS NS NS NS

c P = 0.0001 P = 0.0001 P = 0.0001 P = 0.029

BA +IR 177.31 ± 27.77 209.5 ± 8.23 286.04 ± 20.82 458.1 ± 27.81

a NS NS NS NS

b NS NS NS NS

c P = 0.0001 P = 0.0001 P = 0.0001 P = 0.001

BL 117.07 ± 10.01 169.9 ± 1.71 175.89 ± 26.47 353.9 ± 40.76

a P = 0.0001 P = 0.0001 P = 0.0001 P = 0.001

b P = 0.0001 P = 0.0001 P = 0.0001 P = 0.029

BA + BL 187.17 ± 13.54 191.9 ± 1.29 195.26 ± 18.53 391.9 ± 21.37

a NS P = 0.001 P = 0.0001 P = 0.012

b NS P = 0.012 P = 0.0001 NS

c P = 0.0001 P = 0.0001 NS NS

BL + IR 187.17 ± 13.54 201. 4 ± 4.07 195.26 ± 18.53 437.5 ± 21.18

a NS NS P = 0.0001 NS

b NS NS P = 0.0001 NS

c P = 0.0001 P = 0.0001 NS P = 0.006

BA + BL + IR 161.77 ± 15.77 191.0 ± 3.70 280.07 ± 19.41 411.3 ± 21.01

a NS P = 0.001 NS NS

b NS P = 0.007 NS NS

c P = 0.002 P = 0.0001 P = 0.0001 P = 0.043

Each value represents mean ± SD (n = 10).

n = Number of tests

a: Significant difference from Control

b: Significant difference from Irradiation group (IR)

c: Significant difference from BL group (BL)

NS: no significance
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TGF-ß1 differentiated myofibroblasts can themselves
serve as a source of oxidant production [89]. In vitro
studies have shown that ROS increases the release of
TGF-ß1 from pulmonary epithelial cells [90]. TGF-ß1
down regulates the mRNA synthesis of glutamate
cysteine ligase, the rate-limiting enzyme in the produc-
tion of the antioxidant molecule glutathione [91]. Glu-
tathione synthesis is decreased in TGF-ß over
expressing mice [92]. Regulation of TGF-ß1 is responsi-
ble for the amelioration of the antioxidant status.
During the inflammatory processes which play a criti-

cal role in lung fibrosis, 5-LOX, an enzyme involved in

the oxygenation of the arachidonic acid, is upregulated
in lung fibrosis pathologies [93]. In the present study,
the administration of BA which is a 5-LOX inhibitor
reversed the fibrosis-related increase in oxidative
damage (Tables 3, 4 and 5). This confirms the suggested
role of 5-LOX in lung fibrosis.

Conclusion
BA attenuate the BL-induced injury response in rats,
such as collagen accumulation, airway dysfunction and
injury. This study suggests that the blocking of 5-LOX
may prevent the progression of fibrosis.

Table 4 Superoxide dismutase and catalase activity levels in RBCs compacted cells and lung tissue homogenate in rat
after different treatment conditions

Parameters Groups SOD Cat

Blood
(g/ml packed RBCs)

Lung
(μg/g wet tissue)

Blood
(μmol/ml packed RBCs

Lung
(μmol/g wet tissue)

Control 5.065 ± 0.51 7.366 ± 0.60 398.425 ± 40.57 165.183 ± 18.10

b NS NS NS NS

c P = 0.0001 P = 0.01 NS p = 0.009

BA 5.356 ± 0.47 7.307 ± 1.06 389.510 ± 36.72 162.477 ± 11.25

a NS NS NS NS

b NS NS NS NS

c P = 0.0001 P = 0.014 NS P = 0.018

IR 4.872 ± 0.53 7.233 ± 0.43 377.941 ± 51.08 166.333 ± 13.41

a NS NS NS NS

c P = 0.0001 P = 0.019 NS P = 0.007

BA +IR 4.875 ± 0.50 6.850 ± 0.84 404.467 ± 12.32 154.373 ± 10.08

a NS NS NS NS

b NS NS NS NS

c P = 0.0001 NS NS NS

BL 3.064 ± 0.28 5.973 ± 0.28 382.335 ± 56.22 141.187 ± 1.31

a P = 0.0001 P = 0.01 NS p = 0.009

b P = 0.0001 P = 0.019 NS P = 0.007

BA + BL 4.805 ± 0.56 7.097 ± 0.29 434.126 ± 45.83 171.960 ± 4.12

a NS NS NS NS

b NS NS p = 0.026 NS

c P = 0.0001 P = 0.033 p = 0.039 P = 0.002

BL + IR 4.805 ± 0.56 6.970 ± 0.21 434.126 ± 45.83 157.110 ± 4.84

a NS NS NS NS

b NS NS p = 0.026 NS

c P = 0.0001 NS p = 0.039 NS

BA + BL + IR 4.342 ± 0.77 6.757 ± 0.47 448.533 ± 32.19 181.187 ± 2.17

a P = 0.025 NS p = 0.046 NS

b NS NS p = 0.006 NS

c P = 0.0001 NS p = 0.009 P = 0.0001

Each value represents mean ± SD (n = 10).

n = Number of tests

a: Significant difference from Control

b: Significant difference from Irradiation group (IR)

c: Significant difference from Bleomycin group (BL)

NS: no significance
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